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In this study, the Visible Infrared Imager Radiometer Suite (VIIRS) land surface temperature (LST) environmental
data record (EDR) andModerate Resolution Imaging Spectroradiometer (MODIS) L2 swath LST products (collec-
tion 5) from both the Terra and Aqua satellites were evaluated against ground observations in an arid area of
northwest China during the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) experiment.
Four barren surface sites were chosen for the evaluation, which took place from June 2012 to April 2013. The
results show that the current VIIRS LST products demonstrate a reasonable accuracy, with an average bias of
0.36 K and−0.58 K and an average root mean square error (RMSE) of 2.74 K and 1.48 K for the four sites during
daytime and nighttime, respectively. The accuracy of the nighttime LST is much better than that of daytime.
Furthermore, it was also found that the VIIRS split-window (SW) algorithm provides better performance than
the VIIRS dual split-window (DSW) algorithm during both daytime and nighttime. For MODIS LST products,
the results show that both Terra and Aqua MODIS C5 LST products underestimate the LST for the four barren
surface sites at daytime, and the biases and RMSEs are much larger for Aqua, with biases varies from −0.91 K
to−3.13 K for Terra and from−1.31 K to −3.76 K for Aqua.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Land surface temperature (LST) is a key parameter for hydrological,
meteorological, climatological and environmental studies because it
combines the results of all surface–atmosphere interactions and energy
fluxes between the atmosphere and the surface (Anderson, Norman,
Diak, Kustas, & Mecikalski, 1997; Anderson et al., 2011; Wan & Dozier,
1996; Weng, Lu, & Schubring, 2004; Zhou et al., 2003). Remote sensing
in the thermal infrared (TIR) provides a uniquemethod of obtaining LST
information at the regional and global scales. Many efforts have been
devoted to the establishment of methodology for retrieving the LST
from remote sensing data and significant progress has been achieved
over the past few decades. Many algorithms for LST retrieval have
been proposed, including the single-channel algorithm (Jiménez-
Muñoz & Sobrino, 2003; Li et al., 2010; Qin, Karnieli, & Berliner, 2001),
erms of the Creative Commons
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the spilt-window (SW) algorithm (Sun & Pinker, 2003; Wan & Dozier,
1996; Yu, Privette, & Pinheiro, 2008; Yu et al., 2009) and the tempera-
ture emissivity separation (TES) algorithm (Gillespie et al., 1998),
among others (Li, Tang et al., 2013). The SWalgorithm is themostwide-
ly used algorithm for LST retrieval due to its simplicity and robustness.
This algorithm corrects for atmospheric effects in the TIR bands using
the differential atmospheric absorption in the two adjacent channels
centered at 11 μm and 12 μm. Many operational LST products have
been generated using different SW algorithms, i.e., the Advanced
Very High Resolution Radiometer (AVHRR) (Pinheiro et al., 2007),
Advanced Along-Track Scanning Radiometer (AATSR) (Coll et al., 2012),
Moderate Resolution Imaging Spectroradiometer (MODIS) (Wan &
Dozier, 1996), Spinning Enhanced Visible and Infrared Imager (SEVIRI)
(Niclòs, Galve, Valiente, Estrela, & Coll, 2011) and Geostationary Opera-
tional Environmental Satellites (GOES) (Sun, Yu, Fang, & Liu, 2013).

The Suomi National Polar-orbiting Partnership (NPP) satellite
was launched onOctober 28, 2011, and the Visible Infrared Imager Radio-
meter Suite (VIIRS) onboard the NPP satellite provides a majority of the
Environmental Data Records (EDRs). One of the key EDRs is the VIIRS
LST, which is derived from the VIIRS data using a set of split-window
and dual split-window algorithms. The coefficients of the LST
algorithm are surface type dependent, in reference to the International
ved.
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Geosphere-Biosphere Programme (IGBP) types (Sun, Ji, Ardanuy, Keally,
& Yang, 2000; Sun & Pinker, 2003; Yu, Privette, & Pinheiro, 2005).

The LST products from different sensors have been used successfully
in many scientific fields, e.g., GOES LST products have been used for
evapotranspiration estimation (Anderson et al., 2011),MODIS LST prod-
ucts have been used for air temperature estimation (Vancutsem,
Ceccato, Dinku, & Connor, 2010) and urban heat island monitoring
(Rajasekar &Weng, 2009). In particular, using the LST products generat-
ed from AVHRR, MODIS and VIIRS can aid in the development of long-
term moderate-resolution LST climate data records (CDR), and the
three basic sensor designswill provide a 50-year continuous data record
(Yu et al., 2008).

However, the LST products are not widely used by operational weath-
er and climate centers via direct analysis or data assimilation in land sur-
face and climate models due to the lack of inclusion of detailed
uncertainties (Guillevic et al., 2012; Hulley, Hughes, & Hook, 2012).
Thus, validations of different LST products are necessary to provide LST
users with data quality information, to identify possible deficiencies and
to further improve the LST retrieval algorithms (Coll,Wan, &Galve, 2009).

Two methods are commonly applied to validate the LST products
generated from remote sensing data: the temperature-based method
(T-based) and the radiance-based method (R-based). The T-based
method involves direct comparison with ground measurements per-
formed at the thermally homogenous sites concurrent with the satellite
overpass. Many dedicated field experiments have been conducted to
evaluate the accuracy of different LST products over different surfaces,
including lakes and agricultural lands (Coll et al., 2005, 2007; Hook,
Vaughan, Tonooka, & Schladow, 2007; Li, Tang, et al., 2013; Wan,
2008; Wan, Zhang, Zhang, & Li, 2002). However, qualified ground LST
measurements are still rare. Certain researchers have used surface
longwave radiation observations to retrieve the LST for long-term LST
product evaluation (Sun & Pinker, 2003; Wang & Liang, 2009; Wang,
Liang, & Meyer, 2008; Yu et al., 2009, 2012). In addition, many studies
have only used the nighttime observations for evaluation in order to
mitigate the scale mismatch issue that occurs between ground point
measurements and the satellite pixel scale (Wang & Liang, 2009;
Wang et al., 2007, 2008).

The R-based method does not require ground measured LST values
but does require atmospheric temperature and water vapor profiles and
the surface emissivity over the validation site at the time of satellite over-
pass (Coll et al., 2009; Wan, 2014; Wan & Li, 2008). The in-situ LST is es-
timated from the satellite TOA radiance using the surface emissivity of the
selected site, nearly concurrent atmospheric profile, and an atmospheric
radiative transfer model. The difference between the LST product and
the calculated in-situ LST is the accuracy of the satellite LST product.
This method was firstly developed for validation of the standard MODIS
LST products without the need for rigorous ground measurements.
Later, it was successfully applied to the evaluation of AATSR and SEVIRI
LST products (Coll et al., 2009, 2012; Niclòs et al., 2011). The R-based
method is advantageous for those sensors with coarse spatial resolution
and can be applied to any location with small spatial and temporal varia-
tions in surface emissivity, such as the AIRS (Hulley &Hook, 2012), which
is difficult to apply with the T-based method.

Before the launch of SuomiNPP, theVIIRS LST product algorithmwas
evaluated using simulated data and MODIS data as a proxy (Yu et al.,
2005). After launch, the VIIRS LST EDR requires extensive evaluation
to identify its real performance. The objective of this paper is to evaluate
the VIIRS LST EDR using groundmeasurements collected in an arid area
of northwest China during the Heihe Watershed Allied Telemetry Ex-
perimental Research (HiWATER) experiment (Li, Cheng, et al., 2013).
This work is a part of the VIIRS LST evaluation efforts of the JPSS land
product calibration and validation plan. Additionally, the MODIS L2
swath LST products (collection 5) from both Terra and Aqua will be
evaluated for comparison. More specifically, this paper primarily focus-
es on T-based method at the barren surface sites where LST validation
activities have been relatively rare for this surface type.
The outline of this paper is as follows. Section 2 provides a brief de-
scription of the VIIRS and MODIS LST retrieval algorithms. Section 3
gives a detailed description of the ground LST measurements collected
in the HiWATER experiment, the satellite data used in this paper, and
the ground data processing method. The results of the LST evaluation
are presented and analyzed in Section 4. Finally, the discussion and con-
clusions of this study are summarized in Section 5.

2. VIIRS and MODIS LST retrieval algorithms

2.1. VIIRS LST algorithms

The VIIRS contains 22 spectral bands, which include 16 moderate-
resolution (750 m) bands and 5 high-resolution (375 m) imagery
bands, plus one panchromatic Day/Night band. The VIIRS LST EDR is
based on two kinds of algorithms and is a swath product similar to the
MODIS Level 2 swath products (Yu et al., 2005). The baseline is a split
window (SW) algorithm that applies data from the VIIRS M15 and
M16 bands centered at wavelengths of 10.8 μm and 12.0 μm, respec-
tively (Sun & Pinker, 2003). The optional dual-split window (DSW)
algorithm applies additional two shortwave infrared bands M12 and
M13 centered at wavelengths of 3.75 μm and 4.0 μm, respectively
(Sun et al., 2000). The algorithms are described as follows:SW
algorithm:

LSTi ¼ c0 ið Þ þ c1 ið ÞT11 þ c2 ið Þ T11−T12ð Þ

þc3 ið Þ secθ−1ð Þ þ c4 ið Þ T11−T12ð Þ2:
ð1Þ

Daytime DSW algorithm:

LSTi ¼ a0 ið Þ þ a1 ið ÞT11 þ a2 T11−T12ð Þ þ a3 ið Þ secθ−1ð Þ
þa4 ið ÞT3:75 þ a5 ið ÞT4:0 þ a6 ið ÞT3:75 cosφ

þa7 ið ÞT4:0 cosφþ a8 ið Þ T11−T12ð Þ2
ð2Þ

Nighttime DSW algorithm:

LSTi ¼ b0 ið Þ þ b1 ið ÞT11 þ b2 T11−T12ð Þ þ b3 ið Þ secθ−1ð Þ
þ b4 ið ÞT3:75 þ b5 ið ÞT4:0 þ b6 ið ÞT3:75

2 þ b7 ið ÞT4:0
2

þ b8 ið Þ T11−T12ð Þ2
ð3Þ

where i is the index of 17 IGBP surface types; aj(i), bj(i) and cj(i) are
the algorithm regression coefficients in which j represents the term's
sequential position in the equation; T3.75, T4.0, T11 and T12 are the
brightness temperatures of the M12, M13, M15 and M16 VIIRS
bands, respectively; θ is the satellite zenith angle, and φ is the solar
zenith angle. Note that the DSW algorithm consists of daytime and
nighttime versions, andwas applied as baseline algorithm before Au-
gust 10, 2012.

2.2. MODIS LST algorithm

The standard MODIS LST products include one Level 2 swath product
and six Level 3 gridded products. These products are generated using two
different algorithms: a generalized split window (GSW) algorithm (Wan
& Dozier, 1996) and a Day/Night algorithm (Wan & Li, 1997). In this
paper, only the MODIS Level 2 swath products (MOD11_L2/MYD11_L2)
are used for evaluation. The GSW algorithm is described as follows:

Ts ¼ C þ A1 þ A2
1−ε
ε

þ A3
Δε
ε2

� �
T31 þ T32

2

þ B1 þ B2
1−ε
ε

þ B3
Δε
ε2

� �
T31−T32

2

ð4Þ
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with ε = (ε31 + ε32) / 2 and Δε = ε31 − ε32, where Ts is the LST, T31
and T32 are the MODIS bands 31 and 32 brightness temperatures,
respectively; ε31 and ε32 are the MODIS bands 31 and 32 surface emis-
sivities, respectively; and C, A1, A2, A3, B1, B2 and B3 are the algorithm
regression coefficients.
3. Experimental data

3.1. HiWATER experiment

HiWATER is an ongoing watershed-scale eco-hydrological experi-
ment designed from an interdisciplinary perspective to address prob-
lems that include heterogeneity, scaling, uncertainty and closing of the
water cycle at the watershed scale (Li, Cheng, et al., 2013; Liu et al., in
preparation). The experiment was performed in the Heihe River Basin,
which is in the arid region of northwest China (Gansu province) and
the coordinate range is between 97.1°E–102.0°E and 37.7°N–42.7°N.
The overall objective of the HiWATER experiment is to improve the
observability of hydrological and ecological processes, to build a
world-class watershed observing system and to enhance the applicabil-
ity of remote sensing in integrated eco-hydrological studies and water
recourse management at the basin scale (Li, Cheng, et al., 2013). Three
key experimental areas (KEAs)were selected inwhich to conduct inten-
sive and long-term observations: the cold region experimental area in
the upper reaches, the artificial oasis experimental area in the middle
reaches, and the natural oasis experimental area downstream. Certain
Fig. 1. Spatial distribution and ground photographs of the four barren surface sites in this stud
2012. The RGB components are channels 3 (0.81 μm), 2 (0.66 μm) and 1 (0.56 μm), respective
foci experiment areas (FEAs) also exist in each KEA, which were de-
signed as hierarchically nested locations of multi-scale ground observa-
tions. Detailed information on theHiWATER experiment can be found in
Li, Cheng, et al. (2013) and at http://hiwater.westgis.ac.cn/english/. The
field observations and remotely sensed data used in this studywere de-
rived from the KEA of the middle stream during the period from June
2012 to April 2013.
3.2. Ground site

The LST evaluation in this study uses four sites, and their geographic
locations and the descriptions are presented in Fig. 1 and Table 1,
respectively. The four sites are located in large flat areas around the
oasis. Four sites contain three land surface types, i.e., Gobi (GB), sand
dune (SSW) and desert steppe (HZZ, JCHM). Gobi site consists of small
gravel, bare soil and small Alhagi sparsifolia. A. sparsifolia is a spiny, pe-
rennial subshrub which mainly grows in salinized and arid regions in
the native ranges of northwestern China, Central Asia, India, andMiddle
and Near East (Gui, Zeng, Liu, & Zhang, 2013). The sand dune site is
more uniformly, but sparsely covered by A. sparsifolia. The sand dune
is approximately 10 to 20 m high and the sand is primarily composed
of quartz. Desert steppe site consists of bare soil and A. sparsifolia, and
the ground cover fraction of A. sparsifolia is approximately 0.1. Accord-
ing to the atmospheric profile product from MODIS (MOD07), the
total water vapor contents for the study area ranged from 0.5 to
2.6 g/cm2 from June to September, 2012.
y. The upper right image is the ASTER L1B VNIR image covering the study area on July 10,
ly, with 15 m resolution.

http://hiwater.westgis.ac.cn/english/


Table 1
Descriptions of the four sites.

Site Latitude
Longitude

Elevation (m) Land cover VIIRS land cover
type

MODIS IGBP land
cover type

Instrument Measurement
height (m)

Time period
(year/month/day)

GB 38.9150 N
100.3042 E

1567 Gobi Barren Barren or sparsely
vegetated

CNR1 net radiometers 6 2012/07/22–2012/10/14

SSW 38.7892 N
100.4933 E

1555 Sand dune Barren Barren or sparsely
vegetated

CNR1 net radiometers 6 2012/06/08–2012/10/14

HZZ 38.7652 N
100.3186 E

1735 Desert steppe Barren Grasslands SI-111 radiometer 2.65 2012/06/04–2012/10/14

JCHM 38.7781 N
100.6967 E

1625 Desert steppe Barren/Grasslands Grasslands SI-111 radiometer 4 2012/06/29–2013/04/23

Table 2
List of dates and overpass times of the ASTER data and standard deviation of 11 × 11
ASTER LST pixels at four sites.

Case Date (month/day/year) Overpass time (UTC) STD (K)

GB SSW HZZ JCHM

1 05/30/2012 04:19 0.82 1.37 0.58 0.58
2 06/15/2012 04:19 0.87 0.85 0.70 0.42
3 06/24/2012 04:13 0.77 1.03 0.64 0.54
4 07/10/2012 04:13 1.12 1.44 0.81 0.33
5 08/02/2012 04:19 1.35 1.82 0.70 0.52
6 08/11/2012 04:13 1.24 1.48 0.87 0.59
7 08/18/2012 04:19 0.63 0.64 0.78 0.58
8 08/27/2012 04:13 1.04 0.99 0.51 0.56
9 09/03/2012 04:19 1.13 1.08 0.40 0.57
10 09/12/2012 04:13 1.09 1.01 1.07 0.60
11 09/19/2012 04:19 1.11 0.77 0.63 0.41
12 09/28/2012 04:13 1.00 0.86 0.54 0.59
All 1.01 1.11 0.69 0.52
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3.3. Ground instrument

Two types of instruments are equipped in these sites. The GB and
SSW sites are each equipped with one Kipp & Zonen CNR1 net radiom-
eters, which observes the surface at nadir from a 6 m height and the
HZZ and JCHM sites are equipped with Apogee SI-111 thermal infrared
radiometers, which directly measure the land surface temperature.
These sites are also equipped with other meteorological instruments
to measure the magnitudes of the air temperature, humidity and wind
speed (except for the JCHM site). The HZZ site is each equipped with
two SI-111 radiometers. Both of the radiometers observe the surface
at nadir from heights of 2.65 m to obtain a target footprint of 3.6 m2

for the HZZ site. Two SI-111 radiometers are used at the JCHM site;
one observes the surface at nadir from a 4 m height with a footprint
of 8 m2, and the other views the sky at an effective angle of approxi-
mately 55° from the zenith to measure the atmospheric downwelling
radiance.

The SI-111 radiometers and CNR1 net radiometers are sampled
every 30 s at the GB, SSW and HZZ sites, and the 30-second samples
are averaged to obtain 1 minute values. All data are transmitted and ar-
chived in the data center using wireless transmission techniques. The
sampling frequency of the SI-111 radiometers is 5 s at the JCHM site
and the data are archived in a Campbell CR1000 datalogger.

3.4. Ground LST estimation

For the GB and SSW sites, the LST was estimated from the upwelling
and downwelling longwave radiation using the following equation:

Ts ¼
F↑− 1−εbð Þ � F↓

εb � σ

" #1=4

ð5Þ

where Ts is the LST, F↑ is the surface upwelling longwave radiation, εb is
the surface broadband emissivity (BBE), σ is the Stefan–Boltzmann's
constant (5.67 × 10−8 Wm−2 K−4), and F↓ is the atmospheric
downwelling longwave radiation at the surface.

Cheng, Liang, Yao, and Zhang (2013) have indicated that 8–13.5 μm
is the optimal broadband emissivity spectral range for representing the
entire longwave range. Thus, the BBE for 8–13.5 μm is estimated from
the ASTER narrowband emissivities using the following linear equation
(Cheng et al., 2013):

εb ¼ 0:197þ 0:025ε10 þ 0:057ε11 þ 0:237ε12 þ 0:333ε13
þ 0:146ε14 ð6Þ

where εb is the surface broadband emissivity, and ε10–ε14 are the five
ASTER narrowband emissivities.

Twelve ASTER images were collected in the experimental area from
May to September of 2012. Table 2 presents a list of all dates and the
overpass times of theASTERdata. The land surface temperature andemis-
sivities were derived from the ASTER data using the TES algorithm
(Gillespie et al., 1998), combinedwith theWater Vapor Scaling (WVS) at-
mospheric correction method (Li et al., in preparation; Tonooka, 2005).
The average εb values of 0.955 ± 0.007 and 0.922 ± 0.005were calculat-
ed from the 12 ASTER scenes for the GB and SSW sites, respectively.

For the HZZ and JCHM sites, the SI-111 radiometer measured radio-
metric temperatures were corrected for emissivity and the downward
sky irradiance effects. Because no atmospheric downwelling radiance
measurements were collected at the HZZ site and the distance between
HZZ site and JCHM site was close to 30 km, assuming the atmosphere
was stable in this distance in the arid area, the atmospheric down-
welling radiance measurements from JCHM were used directly for the
HZZ site. If Tr is the radiometric temperature measured by a radiometer,
the true land surface temperature Ts is given by:

B Tsð Þ ¼ B T rð Þ− 1−εð ÞLsky
h i

=ε ð7Þ

where B is the Planck function weighted for the spectral response func-
tion of the SI-111 radiometer, ε is the surface emissivity of SI-111 chan-
nel and Lsky is the downward sky irradiance divided by π.

The HZZ and JCHM sites exhibit the same land cover types, both
consisting of bare soil and A. sparsifolia. Thus, the emissivities of the
sites were determined using the vegetation cover method (Valor &
Caselles, 1996). This method requires the vegetation and background
emissivities. During the field experiment, the emissivities of bare soil
and A. sparsifolia in the JCHM sites were measured using the ABB
BOMEM MR304 spectroradiometers and a diffuse golden plate, which
were used to obtain the radiometric data of the samples and the corre-
sponding atmospheric downward radiance. The spectral resolution of
the MR304 is 1 cm−1. The emissivity spectra in the range of 8–14 μm
were retrieved using the Iterative Spectrally Smooth Temperature and



115H. Li et al. / Remote Sensing of Environment 142 (2014) 111–121
Emissivity Separation (ISSTES) algorithm, which has been proven as an
effective algorithm with high accuracy for temperature and emissivity
retrieval (Borel, 1998; Ingram &Muse, 2001). Nine and five valid emis-
sivity sampleswere obtained for bare soil and A. sparsifolia, respectively.
Thus, the SI-111 channel emissivity values of 0.969 ± 0.002 and
0.980 ± 0.003were obtained for bare soil and A. sparsifolia respectively,
at the JCHM site. The Fractional Vegetation Cover (FVC) of the JCHM site
was measured using a photographic method (Liu, Mu, Wang, & Yan,
2011) at nadir view, and a value of 0.1was obtained. Finally, an emissiv-
ity value of 0.970 ± 0.002was obtained for the JCHM site.We also used
ground measurements from the JCHM site in winter, and therefore, the
snow emissivity is used if the surface type of the VIIRS LST EDR indicates
snow. Three snow emissivity samples in the ASTER spectral librarywere
used to calculate the channel emissivity (Baldridge, Hook, Grove &
Rivera, 2009), and an average value of 0.984was obtained. The emissiv-
ity measurements were not performed at the HZZ site, but we analyzed
the ASTER BBE values of the HZZ and JCHM sites and found that the BBE
values of these two siteswere nearly the same. Therefore, the emissivity
value of the JCHMsitewas used directly for theHZZ sitewhen retrieving
the LST.

3.5. Ground LST uncertainty

The absolute accuracy δ(cal) of the SI-111 radiometer is ±0.2 K at
temperatures from 238 K to 338 K (from factory calibration; http://
www.apogeeinstruments.com/infraredradiometer), and these radiome-
ters have been successfully used in many field experiments for LST vali-
dation purposes (Li, Liu, Du, Jiang, &Wang, 2013; Niclòs et al., 2011). The
CNR1 net radiometers were comparedwith an Eppley Precision Infrared
Radiometer (PIR), which is the World Meteorological Organization
(WMO) first-class radiometer during the HiWATER experiments. The
differences in the longwave radiation were approximately −8 W m−2

to 3 W m−2 (Xu et al., 2013),with a small difference at night and a larger
Fig. 2. Histograms of land surface temperature for the 11
difference around noon during the daily course of radiation (8 W m−2 at
daytime and 3 W m−2 at nighttime), equivalent to an error of 1.2 K in
the LST at daytime and 0.5 K in the LST at nighttime, respectively.

Considering an emissivity uncertainty of ±0.01 for the ground LST
retrieval of each site, which is larger than the uncertainties in the emis-
sivity values listed above, the emissivity correction errors δ(emis) range
from ±0.3 K to ±0.5 K depending on the magnitude of Lsky and the
temperature range in this study.

The in-situ LSTs were calculated by averaging the ground measure-
ments collected by the radiometers within 3 min centered at the satel-
lite acquisition times over the sites. The standard deviation (STD) of the
obtained LSTs was calculated as the temporal variability of the LST at
each evaluation sites δ(temp) and was smaller than 0.25 K for all sites.

The uncertainties associated with the spatial thermal variability of
the evaluation sites were analyzed using the twelve ASTER LST prod-
ucts. The LSTs for the 11 × 11 pixels (1 km2) centered on the evaluation
site were extracted and the STD was calculated for each scene. All the
STD values of twelve ASTER scenes for four sites are summarized in
Table 2. The average STD of twelve ASTER scenes was considered as an
estimate of the spatial uncertainties associated with the use of in-situ
LSTs to evaluate the satellite LST product due to the spatial dissimilarity
problem δ(spat). Average values of 1.01 K, 1.11 K, 0.68 K and 0.52 K
were obtained for the GB, SSW, HZZ and JCHM sties, respectively.
Fig. 2 shows histograms of the LST for 11 × 11 pixels for the four sites
on August 27, 2012. The STD values of this daywere very close to the av-
erage values for the four sites. It can be found that the LST differences
between about 95% pixels are within 4 K for GB and SSW sites and 2 K
for HZZ and JCHM sites. These results indicate that the selected four bar-
ren surface sites reveal a relatively high thermal homogeneity in the
daytime. Additionally, it should be noted that the δ(spat) should be
smaller at nighttime.

Therefore, the total uncertainty in the temperaturemeasurement for
each site δ(Ts) is given by a combination of the four sources of error
× 11 ASTER pixels at four sites on August 27, 2012.

http://www.apogeeinstruments.com/infraredradiometer
http://www.apogeeinstruments.com/infraredradiometer


Table 3
Summary of evaluation results for the VIIRS LST product at four sites.

Site Day Night

Bias STD RMSE N Bias STD RMSE N

GB 1.68 2.04 2.61 28 −0.70 0.58 0.90 27
SSW −0.08 2.17 2.14 36 −2.26 1.53 2.72 36
HZZ 1.76 3.09 3.52 37 0.65 1.09 1.26 39
JCHM −1.92 1.92 2.70 80 −0.01 1.02 1.02 93
All 0.36 2.31 2.74 181 −0.58 1.06 1.48 195
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(calibration, emissivity correction, temporal and spatial uncertainty)
(Niclòs et al., 2011), as follows:

δ Tsð Þ ¼ δ calð Þ2 þ δ emisð Þ2 þ δ tempð Þ2 þ δ spatð Þ2
h i1=2

: ð8Þ

Values of 1.65 K, 1.72 K, 0.90 K and 0.75 Kwere obtained for the GB,
SSW, HZZ and JCHM sites, respectively. It can be observed that the JCHM
site shows the smallest LST uncertainties at daytime, and the uncer-
tainties should be smaller at nighttime for all sites.

3.6. VIIRS and MODIS products

The VIIRS and Terra/Aqua MODIS products were acquired over the
evaluation sites for all cases listed in Table 1. For VIIRS, the LST EDR
and corresponding moderate-bands terrain corrected geolocation
Fig. 3. Scatterplots between the VIIRS LST and ground LST for (black) daytime and (red) nightt
reader is referred to the web version of this article.)
Sensor Data Records (SDR) (GMTCO) at 750 m resolution were used.
For MODIS, the collection 5 LST products MOD11_L2 (Terra) and
MYD11_L2 (Aqua) at 1 km resolution and the corresponding M*D03
geolocation products were used. The M*D is used for both the Terra
(MOD) and Aqua (MYD) products.

Based on the geo-location information (latitude and longitude) of
each evaluation site, the LST values of the VIIRS and MODIS products
were extracted for the pixel closest to the evaluation site. Additionally,
the satellite overpass time, sensor view zenith angle, MODIS band
31/32 emissivity, quality flag (QF) of VIIRS and quality control (QC) of
MODIS were also extracted. According to the QF or QC information,
only high/good quality data of VIIRS/MODIS LST products were used
for evaluation. Next, the VIIRS and MODIS LSTs were matched with
the ground-measured LSTs according to the satellite observation time.
The satellite observation time was derived by linearly interpolating
the start and end times of each VIIRS and MODIS product swath. In ad-
dition, all valid points were also examined manually to exclude cloud
contaminated pixels with unreasonably low LST values.
4. Results

4.1. VIIRS LST

The VIIRS LSTs and MODIS LSTs were compared with the ground-
measured LSTs, and the cases with differences larger than 10 K were
treated as outliers and excluded for statistics. The results of comparisons
ime at the four sites. (For interpretation of the references to color in this figure legend, the
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between VIIRS LST and the ground LST are summarized in Table 3. Fig. 3
shows scatterplots of the VIIRS LST and ground LST for day and night
observations at the four evaluation sites.

For the four sites at daytime, the VIIRS bias varies from −1.92 K to
1.76 K, with an average of 0.36 K; the STD varies from 1.92 K to
3.09 K, with an average of 2.31 K; and the root mean square error
(RMSE) varies from 2.14 K to 3.52 K, with an average of 2.74 K. The
VIIRS LSTs are warmer than the ground LSTs for the GB and HZZ sites
and colder than the ground LSTs for the JCHM site during daytime. Al-
though the HZZ and JCHM sites have similar land cover types, the LST
biases showed contrast.

For the four sites at nighttime, the bias varies from −2.26 K to
0.65 K, with an average of −0.58 K; the STD varies from 0.58 K to
1.53 K, with an average of 1.06 K; and the RMSE varies from 0.90 K
to 2.72 K,with an average of 1.48 K. The evaluation results for nighttime
are better than those during daytime, especially in terms of RMSE. The
daytime RMSEs are greater than 2 K for all four sites, and the nighttime
RMSEs aremuch smaller, approximately 1 K for all sites except the SSW
site. This is because the atmospheric water vapor is less and the land
surface behaves almost homogeneously at night. Therefore, the ground
temperature measurements during nighttime are more representative
of the LST at the satellite pixel scale than those during daytime. This
was consistent with the results of other studies (Guillevic et al., 2012;
Hulley & Hook, 2012; Wang & Liang, 2009; Yu et al., 2005). The cold
bias (−2.26 K) for the SSW site indicates that the VIIRS LST algorithm
underestimates the LST for the sand surfaces at nighttime.

The VIIRS LST productswere generatedwith two algorithms. Prior to
August 10, 2012, the DSW algorithm was performed as the baseline
algorithm for LST production. After August 10, 2012, the SW algorithm
was executed as the baseline algorithm for LST production. The accura-
cies of these two algorithms were compared and the results of the
comparison between the DSW and SW algorithms for daytime and
nighttime at four sites are summarized in Table 4 and Table 5,
respectively.

For the daytime results, the RMSEs for theDSWalgorithmwere larg-
er than those of the SW algorithm at all four sites, with averages of
3.38 K and 2.36 K, respectively. This result indicates that the SW algo-
rithm provides better performance than the DSWalgorithm at daytime,
consistent with the results of Yu et al. (2005).

For the nighttime results, the two algorithms obtain similar results
except for the SSW site, with an average of 1.70 K and 1.16 K for the
RMSE results, respectively. For the SSW site, the nighttime DSW
algorithm underestimates the LST by 3 K, whereas the SW algorithm
provides much better results with an RMSE of 1.64 K. This means that
the SW algorithm can provide more stable results for different land
surface types at nighttime.
4.2. MODIS LST

Figs. 4 and 5 show the scatterplots of theMODIS LST and ground LST,
respectively, for Terra and Aqua observations at the four sites. The com-
parison results for the Terra and Aqua MODIS LST products are summa-
rized in Table 6 and Table 7, respectively.

The daytime biases in the Terra MODIS LST are negative for the four
sites, indicating an underestimation of the LST for the barren surface
Table 4
Summary of daytime evaluation results for the VIIRS DSWand SWalgorithms at four sites.

Site Daytime DSW SW

Bias STD RMSE N Bias STD RMSE N

GB 1.82 3.78 3.90 6 1.64 1.39 2.13 22
SSW −0.26 2.71 2.63 16 0.06 1.68 1.63 20
HZZ 1.36 4.08 4.17 15 2.03 2.27 3.00 22
JCHM −1.54 2.54 2.83 8 −1.96 1.85 2.69 72
All 0.35 3.28 3.38 45 0.44 1.80 2.36 136
types, and the JCHM showed the largest bias (−3.13 K). The nighttime
biases were much smaller for all sites except for the SSW site. The large
cold bias (−2.66 K) for the SSW site indicates that theMODIS LST algo-
rithm underestimates the LST for sand surfaces at nighttime, similar to
the VIIRS LST algorithm. The daytime LST RMSEs were lowest for the
GB site (1.73 K) and increased substantially for the HZZ (2.73 K), SSW
(2.75 K) and JCHM (3.83 K) sites. The nighttime RMSEs are smaller in
magnitude than the daytime RMSEs except for the SSW sites.

The daytime AquaMODIS LST results are similar to the Terra MODIS
LST results at the four sites, but the biases and RMSEs are much larger,
with three sites (GB, HZZ, JCHM) showing biases and RMSEs greater
than 3 K. These results indicate that both the Terra and Aqua MODIS
C5 LST products underestimate the LST for barren surfaces at daytime,
consistent with the results of Wan (2014). Wan (2014) indicates that
there are two possible reasons for the large LST errors at barren surface
sites. First, the original split-window algorithm does not well cover the
wide range of LSTs, namely, the daytime LSTs are greater than the air
temperature at the surface level by more than 16 K, which is beyond
the upper limit (Ts-air + 16 K) used in the current MODIS C5 LST prod-
ucts algorithm development (Wan, 2014; Wan & Li, 2008). Second, the
large errors in surface emissivity values in MODIS bands 31 and 32 esti-
mated from land cover types.

The daytime differences between the groundmeasured LSTs and the
5 m air temperatures for the three barren surface sites are summarized
in Table 8. It can be observed that the differences are both greater than
16 K for the Terra andAqua observations,with average biases of 19.07 K
and 20.26 K, respectively. In order to solve this problem, two separate
sets of coefficients developed for the type of bare soil in the hot and
warm bare soil regions based on simulation of a much wider LST
range have been used in the refined version of the GSW algorithm to
produce the collection 6 MODIS LST product, and the validation results
indicate that the refined GSW algorithm works well in both daytime
and nighttime cases at most bare soils sites (Wan, 2014).

In order to investigate whether the large negative biases were also
caused by inaccurate emissivity values in MODIS bands 31 and 32, the
land surface emissivity (LSE) values in ASTER band 14 (11.3 μm) were
used for comparisonwithMODIS band 31 (11.03 μm) emissivity values.
Numerical simulations by Gillespie et al. (1998) indicated that ASTER
TES algorithm should be able to recover emissivities within about ±
0.015 for all bands, but Hulley, Hughes, and Hook (2012) indicated
that ASTER band 14 emissivity uncertainty retrieved by TES algorithm
is approximately below 0.005 over bare surface (rocks, soils, sand).
The ASTER band 14 LSEs for the 11 × 11 pixels (1 km2) centered on
the evaluation site were extracted, and the average values and STDs
were calculated for the twelve scenes. LSE values in MODIS bands 31
and 32 and ASTER band 14 for the four sites are summarized in
Table 9. It can be found that the LSE values in MODIS band 31 are
overestimated by approximately 0.007 for GB and SSW sites when com-
pared with the LSE values in ASTER band 14, which would result in an
underestimation of LST. The split-window algorithm is very sensitive
to emissivity errors, and the sensitivity is significantly higher for direr
atmospheres, a 0.005 error in emissivity will result in a LST error of
1 K or more under drier conditions (Freitas, Trigo, Bioucas-Dias, &
Table 5
Summary of nighttime evaluation results for the VIIRS DSW and SW algorithms at four
sites.

Site Nighttime DSW SW

Bias STD RMSE N Bias STD RMSE N

GB −0.73 0.72 0.99 6 −0.69 0.56 0.88 21
SSW −3.24 1.93 3.73 15 −1.56 0.52 1.64 21
HZZ 0.87 1.23 1.48 17 0.49 0.96 1.06 22
JCHM 0.23 0.61 0.61 8 −0.04 1.05 1.05 85
All −0.72 1.12 1.70 46 −0.45 0.77 1.16 149



Fig. 4. Scatterplots between the TerraMODIS LST and ground LST for (black) daytime and (red) nighttime at the four sites. (For interpretation of the references to color in thisfigure legend,
the reader is referred to the web version of this article.)

118 H. Li et al. / Remote Sensing of Environment 142 (2014) 111–121
Göttsche, 2010; Galve, Coll, Caselles, & Valor, 2008; Yu et al., 2008). This
is more evident for the nighttime evaluation results for GB and SSW
sites which both have large negative biases for Terra and Aqua products,
because the difference in LST and air temperature does not play a role at
nighttime. The LSE values in MODIS band 31 and ASTER band 14 are
very close for the HZZ and JCHM sites, thus the nighttime Aqua MODIS
LST results are much better for these two sites, with all biases smaller
than 1 K and RMSEs smaller than 1.6 K. Hulley, Hook, and Hughes
(2012) also pointed out that the MOD11 LST products underestimated
LST by 3–4 K at five pseudo-invariant sand dune sites in the southwest-
ern United States due to an overestimation of the emissivity values for
sand dune. In order to solve this problem, Wan (2014) proposed a pro-
totype emissivity adjustmentmodel for bare soil pixels, and the prelim-
inary results indicated that the emissivity adjustmentmodel was useful
to reduce the MODIS collection 6 LST product error. It should be noted
that the daytime biases in VIIRS and MODIS LST at SSW site are smaller
than those of nighttime. The possible reason for this is that there are rel-
atively large spatial variations in LST at SSW site than other three sites at
daytime (Fig. 2 and Table 2), which will cancel out some of the errors
caused by inaccurate emissivity estimation.

In general, the VIIRS LST products provide better accuracy both for
daytime and nighttime conditions compared with the Aqua MODIS C5
LST products, which have the close overpass time. There are two possi-
ble reasons for such results. First, the spatial resolution of the VIIRS LST
product is greater than that of MODIS LST product. Second, only the
VIIRS LSTs with a satellite view zenith angle (VZA) less than 40° were
used for evaluation, considering that the VIIRS high-quality LST product
only contains LSTs with a VZA less than 40°. The errors in the LST prod-
uct are generally larger for an LSTwith a larger VZA. The comparison re-
sults for the Terra andAquaMODIS LSTswith a VAZ less that 40° are also
summarized in Table 10 and Table 11, respectively. The accuracy of both
the Terra and Aqua MODIS LSTs are improved at daytime when com-
pared with the results for all values of VZA, and the average RMSE was
improved from 2.76 K to 1.90 K for Terra and from 3.80 K to 2.70 K
for Aqua. Nevertheless, the accuracy at nighttime is not significantly
improved.

5. Discussion and conclusions

LST is a key variable for hydrological, meteorological, climatological
and environmental studies. Many remote sensing LST products have
been generated in the past, but quantifying the accuracy of different
LST products will both improve their utility and help refine the LST re-
trieval algorithms. The study reported in this paper evaluated the accu-
racy of two LST products: the VIIRS LST EDR and MODIS collection 5 L2
LST products from the Terra and Aqua satellites. Conventional T-based
method was performed using ground LST measurements collected
from four barren surface sites in an arid area of northwest China during
the HiWATER experiment which took place from June 2012 to April
2013. Two types of ground measurements were used to obtain the
ground LSTs. The first type is the surface longwave radiation measured
by the CNR 1 net radiometer, and the second is the radiometric ground



Fig. 5. Scatterplots between the AquaMODIS LST and ground LST for (black) daytime and (red) nighttime at the four sites. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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surface temperature measured by the SI-111 radiometer. Both ground
measurements were transferred to the ground LSTs and directly com-
pared with the satellite LSTs at the pixel scale.

The results indicate that the current VIIRS LST products yield a rea-
sonable accuracy, with average biases of 0.36 K and−0.58 K and aver-
age RMSEs of 2.74 K and 1.48 K for the four sites at daytime and
nighttime, respectively. However, three barren sites at daytime and
one barren surface site at nighttime showed absolute biases larger than
1.5 K. Additionally, the accuracy for nighttime is much better than that
of daytime. The daytime RMSEs are larger than 2 K for all four sites and
the nighttime RMSEs are much smaller, near 1 K for all sites except for
a sandy dune site (SSW), which indicates that the VIIRS LST products un-
derestimate the LST for sand surfaces at nighttime. Furthermore, we also
found that the SWalgorithm can provide superior performance to that of
DSW algorithm at both daytime and nighttime.

For MODIS, the results indicate that the Terra and Aqua MODIS C5
LST products underestimate the LST for the four barren surface sites at
Table 6
Summary of evaluation results for the Terra MODIS LST product at four sites.

Site Day Night

Bias STD RMSE N Bias STD RMSE N

GB −0.91 1.49 1.73 38 −1.23 0.84 1.48 27
SSW −1.06 2.56 2.75 58 −2.66 1.73 3.16 38
HZZ −1.61 2.22 2.73 54 0.31 1.04 1.07 38
JCHM −3.13 2.22 3.83 110 −0.93 1.12 1.45 95
All −1.68 2.12 2.76 260 −1.13 1.18 1.79 198
daytime, and the biases and RMSEs are much larger for Aqua, with
biases ranging from −0.91 K to −3.13 K for Terra and from −1.31 K
to −3.76 K for Aqua. There are two reasons for the large LST errors at
barren surface sites. First, the daytime LSTs are larger than the air tem-
perature at the surface level by more than 16 K which is beyond the
upper limit (Ts-air + 16 K) used in the current MODIS C5 LST products
algorithm development. Second, it is due to the large errors in surface
emissivity values in MODIS bands 31 and 32 estimated from land
cover types. Thus, in order to solve these problems, two separate sets
of coefficients developed for the type of bare soil in the hot and warm
bare soil regions based on a much wider LST range simulation and a
emissivity adjustment model have been used in the new version of
the GSW algorithm to improve the collection 6 MODIS LST product
(Wan, 2014).

As pointed out by Wan (2008), it is very difficult to validate LST at
1 km or larger pixel scale. Because of the large spatial variation in
LSTs, especially during the daytime, it is very difficult to find suitable
Table 7
Summary of evaluation results for the Aqua MODIS LST product at four sites.

Site Day Night

Bias STD RMSE N Bias STD RMSE N

GB −3.07 2.33 3.83 29 −1.02 0.76 1.27 34
SSW −1.31 2.54 2.83 48 −1.78 1.68 2.44 45
HZZ −3.01 2.89 4.15 45 0.91 1.24 1.53 50
JCHM −3.76 2.30 4.40 103 −0.56 1.02 1.16 91
All −2.79 2.52 3.80 225 −0.61 1.18 1.60 220



Table 8
Daytime difference statistics between the ground-measured LST and air temperature.

Site Terra Aqua

Bias STD Bias STD

GB 16.52 2.75 17.99 2.65
SSW 20.18 3.31 22.23 2.56
HZZ 20.50 3.85 20.55 4.17
All 19.07 3.30 20.26 3.13

Table 10
Summary of the evaluation results for the Terra MODIS LST results with a view zenith
angle less than 40° at four sites.

Site Day Night

Bias STD RMSE N Bias STD RMSE N

GB −0.27 1.05 1.06 28 −0.86 0.49 0.98 17
SSW 0.05 1.79 1.77 40 −1.97 1.34 2.37 25
HZZ −0.85 1.71 1.89 36 0.81 0.86 1.17 22
JCHM −2.4 1.57 2.86 75 −0.58 0.93 1.09 53
All −0.87 1.53 1.90 179 −0.65 0.91 1.40 117

Table 11
Summary of the evaluation results for the Aqua MODIS LST results with a view zenith
angle less than 40° at four sites.

Site Day Night

Bias STD RMSE N Bias STD RMSE N

GB −1.95 1.36 2.35 12 −0.88 0.91 1.25 18
SSW −0.01 1.87 1.84 27 −1.41 1.67 2.16 29
HZZ −1.83 2.57 3.11 26 0.97 1.11 1.46 31
JCHM −2.97 1.87 3.51 65 −0.44 0.97 1.06 52
All −1.69 1.92 2.70 130 −0.44 1.17 1.48 130
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homogeneous validation sites. Thus, large homogeneous lakes and
croplands are ideal sites for LST validation (Coll et al., 2005; Wan
et al., 2002). However, it is still very necessary to quantify the accuracy
of different LST products at different surface types, such as the barren
surface types in this study. There are also some shortcomings of this
study which should be acknowledged. First, two sites (GB and SSW)
used in this study have relatively large variations in LSTs, with uncer-
tainty close to 1 K. Wan (2008) has indicated that ideal homogeneous
validation site should have an uncertainty well below 1 K. Thus, the
large variations in LSTs have an impact on the evaluation results, espe-
cially for the daytime results at SSW site. Second, we only used one
point LST measurement for each site, whichmay not enough for valida-
tion of the LST at spatial resolution around or larger than 1 km for the
barren surface. Thus, TIR radiometers with high accuracy should be
used at multiple points in the same time to evaluate the spatial varia-
tions in barren surface in-situ LSTs. For most of the LST validation field
campaigns in the past, the in-situ LSTs were measured manually by
TIR radiometers atmultiple points. However, thismethod is not suitable
for the long-term LST validation due to the large cost of field campaigns
and high temporal resolutions of current TIR sensors, such as MODIS
and VIIRS. Recently, the power of wireless sensor network (WSN) tech-
nology has provided the capability of developing automatic, intelligent
and remote-controllable large-scale systems for remote sensing algo-
rithm and product validation (Jin et al., 2012; Li, Cheng, et al., 2013;
Raissouni et al., 2013). It provides a new solution to perform long-
term validation of multiple LST products at different scales in the future.
Currently we have already established a WSN composed of six nodes
whichwere designed to validate different kinds of remote sensing prod-
ucts at 1 km scale in a cropland area in Hebei province, China. The field
observations include soilmoisture, soil temperature, LST, leaf area index
(LAI) and other ordinary meteorological parameters. Additionally, note
that the results presented in this paper refer to arid areas with mid-
latitude atmospheric conditions, and further evaluation is required for
additional areas and atmospheric conditions.
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