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Abstract—The collection of ground measurements for validating
remotely sensed crop leaf area index (LAI) is labor and time
intensive. This paper presents an automatic measuring system that
was designed based on a wireless sensor network (WSN). The corn
LAI was continuously observed from June 25 to August 24, 2012.
Approximately, 42 in situ WSN measurement nodes were used in a

area in the Heihe watershed of northwest China. The
data were analyzed in three ways: 1) a comparison with LAI-2000,
2) a daily and 5-day aggregated time series analysis, and 3) a
comparison with a Moderate Resolution Imaging Spectroradi-
ometer (MODIS) LAI using both a ground LAINet LAI and a
scaled-upLAI through inversion of Advanced Spaceborne Thermal
Emission and Reflection radiometer (ASTER) data. The prelimi-
nary results indicated that the measured LAI values from the
LAINet were correlated with the values derived from LAI-2000
(R2 from 0.27 to 0.96with an average of 0.42).When comparedwith
the daily crop LAI growth trajectory, the performance of the
measurement system was improved by using the data that were
aggregated over a 5-day window. When compared with MODIS
LAI, we found that the spatial aggregation values of the ground
LAINet observations and the scaled-up ASTER LAI were identical
or similar to theMODISLAI values over time.With its low-cost and
low-energy consumption, the proposed WSN observation system is
a promising method for collecting ground crop LAI in flexible time
and space for validating the remote sensing land products.

Index Terms—Leaf area index (LAI), remote sensing, validation,
wireless sensor network (WSN).

I. INTRODUCTION

L EAF area index (LAI) is defined as half of the leaf surface
area per horizontal ground area unit and is an important

parameter for ecological and hydrological modeling [1].
Estimation of the LAI using remote sensing data has been
an important method for obtaining LAI data at regional and
global scales. However, the LAI that is estimated from remote

sensing data must be validated and evaluated using ground
measurements before it can be used as a reliable input parameter
for other models [2].

LAI ground validationmethods are classified as either direct or
indirect [3]. The direct method is considered to be the most
reliable for LAI ground truth. However, due to its low efficiency,
the direct method can only be used to obtain the ground LAI
reference values, which are used to calibrate other indirect
measuring instruments.

For this reason, the remote sensing LAI validation experiments
rely largely on indirect measurement methods. In the most
indirect method, the LAI is measured from multi-angle canopy
transmittance under specified conditions [4]. For example, the
LAI-2000 (Li–Cor, Lincoln, Nebraska, USA) should be mea-
sured in diffuse light. Furthermore, the approximately real-time
total downward solar radiation must be measured in open spaces
or outside of the canopy. Next, the ratio of the twomeasurements
can be used to calculate the canopy transmittance [5]. Unlike the
LAI-2000, which uses diffuse light, DEMON (CSIRO,Canberra,
Australia) repeatedly measures direct radiation [6]. The sensor
needs to move linearly over a certain distance underneath the
canopy during measurement, and the measurements must be
repeated several times between early morning and noon to collect
the data across a range of zenith angles.

For instruments that do not use an imaging method, the total
incidence outside of the canopy and the radiation that permeates
through the canopy are measured. Therefore, the successful
application of these instruments is determined by their efficiency,
ease of use, and accuracy. In practice, the operators must walk
outside of the canopy of large croplands or woodlands to find an
open area each time the incident solar radiation is measured [7].
This type of measurement greatly reduces the efficiency of these
instruments [8]. Therefore, some instruments are designed with
cable or radio links. To calculate and display LAI values in real
time, sensors inside and outside of the canopy share the data
collection terminal. Cables and radio link technology are used to
transmit the measured sensor values outside of the canopy to the
data collector [4]. However, the cable-based data generation is
inconvenient for operators inside of the canopy because they
must take measurements while walking. In contrast, radio link
transmission is only effective at communication distances of
150–200 m [4]. These limitations create problems when ground
validating the remotely sensed parameters.

Although the instrument measurement mode (which relies
on an individual walking the interior of the experimental site
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with the measurement devices to obtain multiple sample values)
improves the LAI measurement efficiency, this mode is labor
intensive and requires long periods of sample collection over
large areas. Because the ground measurements are constrained
by the satellite revisit time, they are generally completed several
days before or after the satellite revisits the experimental site in
ground synchronous or quasi-synchronous experiments. To
validate the LAI at a resolution of 1 km, e.g., a Moderate
Resolution Imaging Spectroradiometer (MODIS) LAI, it is
assumed that the ground experiments require ground-based
observational data with a range of at least MODIS pixels.
Therefore, it is difficult to obtain LAI data over such a large space
and a short time period.

Due to the difficulty of ground validating the remote sensing
data, practical experience suggests that joint remote sensing
experiments that are conducted by multiple research entities
provide an effective way to carry out ground validation work
[9]. In reality, however, multiple research groups use multiple
observation instruments at the same time, which produces uncer-
tainty in the LAI ground measurements. For example, each
observation instrument applies to a distinct condition because of
its particular measurement principle. These differences result in
deviations that reach or exceed 50%between different instruments
[3], [6], [10]. Therefore, it is difficult to ensure the data quality
whendifferent instruments are used at the same time. Furthermore,
different operators obtain different measurement results, even
when using the same type of instrument. This is caused by
uncertainty in the operator’s approach. Although human uncer-
tainty can be reduced by developing measurement standards [11],
these uncertainties remain anobstacle to obtain the consistent data.

Some researchers have noted the difficulty of using traditional
instruments to express LAI variations in space, and continuity in
time, from data measured at a single node. It has also been
suggested that movable or sufficiently long linear array sensors
might solve this problem [4]. Lang et al. proposed a collection of
multiple measurements at close proximity under the canopy,
which would measure the transmittance of inhomogeneous
canopies and calculate the canopy LAI [7], [12]. To collect this
data, however, drive motors must be deployed or operators must
walk under the canopy. Although these principles promote the
successful development of commercial LAI measurement sys-
tems, they aremore applicable to small measurement areas. If the
measurement range is large, this method requires massive
amount of labor. Ryu et al. hoped to obtain the data automatically
by observing the data from different measurement instruments
and interconnecting them with a wireless network [8]. If im-
plemented in the future, this method may reduce manual opera-
tion and allow for continuous observations in space. Other
researchers have indicated that a simple and replicable method
for obtaining a ground sample of vegetation parameters is
important for ecological observations [13], [14] and for the
application of remote sensing data [15].

In the field of earth observations, a new method based on
wireless sensor network (WSN) technology, which is called
the earth observation sensor web (EOSW), has gained an in-
creasing attention [16], [17]. The EOSW has been preliminarily
applied in many research fields such as sea ice, soil moisture,
and environmental monitoring [16], [18]. Currently, in terms of

vegetation WSN monitoring, a significant amount of work has
been performed tomeasure the environmental parameters (such as
temperature and moisture) of vegetation growth [14], [19]–[22].
However, few studies have evaluated the automatic measurement
system of vegetation LAI. Compared to the newly emerging
EOSW technique, over the past 20 years, ground-based LAI
measurements have developed relatively slowly. In this context,
we have started to consider the possibility of using the existing
WSN technology to automatically measure the vegetation LAI.
A few pioneering researchers have also started to consider this
possibility. Yuan et al. reported a WSN prototype system for
automaticallymeasuring thecanopyLAI[23].Thissystemdeploys
anoptical sensorunder thecanopy tocapture thevegetationcanopy
transmittance and calculates the LAI based on the Beer–Lambert
law. However, due to the heterogeneity of canopies, the transmit-
tance obtained from a single sensor is not enough to represent
the transmittance of the entire canopy. Therefore, it is difficult
to represent the heterogeneity of canopy LAI using this method.

Cheaper automatic LAI measurements, which can be used for
large areas, are critical for ground validation experiments of
remote sensing surface parameters. These systems should be
designed to save energy, to make simultaneous observations
of a large number of measured points in space, and to ensure
continuous observation over time. Based on the direct light
transmittance algorithm for measuring the LAI, we developed
an LAI measurement system: LAINet [24]. LAINet is a low-cost
LAI network measurement system based on WSN technology.
This paper aims to validate LAINet performance based on the
aspects of multi-node measurements in space and continuous
measurements in time.

Overall, this study has the following aims:
1) to develop a WSN system to take automatic LAI measure-

ments that are suitable for validating the remotely sensed
products;

2) to validate the performance of the newly developed canopy
structure measurement system and conduct a comparative
analysis of the commonly used LAI measurement instru-
ments; and

3) to compare the LAI measured from developed WSNs
with MODIS products and analyze their time variation
characteristics.

II. METHODS

A. Experimental Design

The field experiments presented in this paper were a part of the
Heihe watershed allied telemetry experimental research (Hi-
WATER) project, which is a multi-disciplinary and integrated
remote sensing experiment evaluating ecological and hydrologi-
cal processes in the Heihe River basin [9]. An artificial oasis in
the middle reach of the Heihe River was selected as the experi-
mental area. This area is located in the Yingke and Daman
irrigation districts (longitude: , latitude: ). The
observations were made between June and August, 2012. Corn
was selected for the study because it is an atypical row crop that is
planted uniformly with noncontinuous gaps in experimental
area. Plant spacing of 10–20 cm and row spacing of 50–70 cm
were used.
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LAINet is an automatic device that obtains multi-angle trans-
mittance of the vegetation canopy during the day following the
sun’s movement, based onWSN technology, and then calculates
the crop LAI from multi-angle transmittance using a vegetation
gap probabilitymodel. ThisWSNconsists of three different node
types. The first node type is a circle node with three light sensors
that are deployed above the canopy to receive the total downward
solar radiation. Next, the linear node types are used that have nine
light sensors under the canopy and that receive the permeated
radiation. Finally, sink nodes are used to collect and transmit the
data to a remote data server through the general packet radio
service (GPRS) network. Communication between the nodes is
implemented with a Zigbee network, which is based on the
standard IEEE 802.15.4 low-power field network protocol.
Detailed information regarding the system architecture can be
found in Qu [24].

If only a few measurements in a small space are needed,
LAINet is not as advantageous as traditional LAI measurement
instruments. However, if continuous long time-series observa-
tions are carried out at a large regional scale, LAINet has the
following advantages:

1) It can reduce the time required for one to access the
experimental site. LAINet only requires one to enter the
experimental site during instrument deployment and,
therefore, can minimize the plant disturbances by the
experimenter, which is not possible with current traditional
instruments.

2) Multiple measurement nodes are automatically synchro-
nized, which ensures that the measured data of each node
are obtained simultaneously and avoids the data uncertain-
ty caused by the differences in measurement time.

3) Wireless communication among measurement nodes
requires no wiring. Communication both among the nodes
under the canopy and among the nodes under and above the
canopy is completed via Zigbee wireless networks. As a
result, there is no need to lay and connect cables in the open
area or under the canopy to facilitate the instrument
deployment.

4) The field data are remotely transmitted to the data center
via public wireless networks and are automatically saved
on the database server. Human labor is not required to
collect the field data.

5) It reduces the data acquisition costs, including instrument
and labor costs. For example, in a sampling
region, following theValidation of LandEuropeanRemote
Sensing Instruments (VALERI) [25], 30–50 elementary
sampling units are required. Traditional measurements

take approximately 4–32 days of labor to complete the
weekly repeated measurements. For a growth time of 3
months and a sampling frequency of 7 days, e.g., approxi-
mately 13 times the observations are required to obtain
continuous observed data over such a long period of time.
The approximate cost-efficiency comparison between
LAINet and traditional instruments (e.g., LAI-2000) is
given in Table I.

Table I shows that in a validation experiment, such as the one
that was conducted in a area, the difference in the
hardware cost between the two types of observation strategies is
not obvious. However, as stated previously, there is a distinct
advantage of LAINet in terms of labor cost.

In terms of the validation of LAI products, a spatial sampling
method is an important component of the product validation
specification. In a VALERI project group, researchers have
proposed many ground sampling methods [26], [27] to validate
the medium- and low-resolution LAI products. The literature
summarized the three sampling methods that were commonly
used in the current LAI validation. In practice, it is often
necessary to adjust the existing sampling methods depending
on the specific situation. In our 2012 experimental scheme, the
spatial sampling of the LAI adopted an approximately uniform
sampling method. Namely, within a range of , one to
multiple LAINet measurement nodes was deployed in the space
corresponding to eachMODIS pixel. Theoretically speaking, the
surface variability at theMODIS pixel scale should be taken into
account.However, due to the limitation of the sensor nodes in our
first experiment, the number of ground nodes is not calculated
strictly in accordance with the spatial variability in the current
work. In fact, we usually deploy a smaller number of nodes under
relatively uniform vegetation than under nonuniform vegetation.
In the practical deployment of LAINet nodes, the selection of
node locations takes two factors into account: first, the best use of
existing observational results is considered. Before the deploy-
ment of LAINet nodes, multiple soil moisture WSN nodes are
deployed in the experimental area [9]. The deployment of soil
moisture measurement nodes accounts for the spatial differenti-
ation of soil moisture. Although it is impossible that the spatial
variability of LAINet would be fully consistent with that of the
moisture, we assume that the spatial variability of the crop LAI is
mainly controlled by the soil moisture. Therefore, the nodes that
we deployedwere basically the same as the existing soil moisture
nodes. Secondly, easy instrument installation is involved. To
minimize the disturbance to the crop caused by instrument
installation, we utilized the existing experimental infrastructure.
For example, the below-canopy nodes were designed to share

TABLE I
COST-EFFICIENCY OF TRADITIONAL INSTRUMENTS VERSUS LAINET

The cost in this table is approximately estimated.
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antenna brackets with soil moisture nodes, and some sink nodes
were arranged to share the solar power supply system with the
existing flux tower.

In the experiment conducted in 2012, we deployed nine
sink nodes in the LAINet area within a range of
( with a spatial location corresponding to
MODIS data). Each sink node was connected to three to nine
measurement nodes using the Zigbee network. As a result, a total
of 42 measurement nodes under the canopy and 3 above the
canopy were established as in Fig. 1.

In Fig. 1, the sink nodes were powered by solar energy, and
their antenna systems were fixed on 2.5 m supports to ensure that
the signals were not sheltered by the canopy (which had a
maximum height of 2.2 m). The three nodes above the canopy
and their corresponding convergent antennas were deployed
on the upper side of the same supports to ensure that the nodes
above the canopy were not sheltered by other objects. The nodes
under the canopy, which were powered by rechargeable lithium
batteries, were positioned upward and perpendicularly to the
corn ridges. Each node under the canopy was supported by a
20 cm brace to ensure that the node was not immersed in water
during agricultural irrigation. All measurement and sink nodes
were placed between 200 and 500 m apart. Data communication
between themeasurement and sink nodeswas conducted directly
or with a multi-hop mechanism. Therefore, the measured node
data were easily transmitted by newly formed routes when the
data were not transmitted directly to the sink node. The LAINet
nodes are shown in Fig. 2.

In the course of the experiment, the sensors were set to
operate from 09:00 to 18:00 h (the minimum value of the local
solar elevation angle ranged from 26 to 32 and the maximum

value ranged from 67 to 81 ). During this period, the sampling
interval of the sensor was 15 min, with a sampling duration
of 5 s. Therefore, during each 15-min sampling interval, the
working duration was only 5 s. In addition, the sensor automat-
ically shifted into sleep mode, which greatly reduced the
instrument’s energy consumption and extended its working
duration. To evaluate the LAINet measurement results, we used
the LAI-2000 to measure the vegetation LAI at locations in the
experimental area that were near some of the nodes. To main-
tain the crop’s stable growth around the LAINet site and to
avoid human disturbance, the measured points of the LAI-2000

Fig. 1. Instrument nodes deploymentmap in the experimental area. There are 9 sink nodes (S01–S09) and 42measurement nodes under the canopy ( stands for
the sink node number and stands for themeasurement node number below the sink nodes), 3measurement nodes for total radiation above the canopy (S01C, S02C, and
S03C), and 15 eddy covariance matrix towers (EC01–EC15) with MODIS pixels ( , 2, 3, 4).

Fig. 2. LAINet nodes, including: (a) the solar power system, sink nodes, and
nodes above the canopy, (b) the zoomof a node above the canopy, (c) the zoomof
sink node (middle), the solar power control (left) and GPRS unit (right), and (d) a
linear node with nine light sensors under the canopy.

434 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 2, FEBRUARY 2014



were placed at approximately 50–100 m from the LAINet
node. The selection of the LAI-2000 sampling locations was
based on the visible crop growth at the LAINet node to ensure
that the growth status at the two types of measurement sites
were alike. In the LAI-2000measurement scheme, based on the
instrument manual [28], an area of was used to collect
between 7 and 9 readings in a diagonal pattern. Next, the
average value of the readings was used to calculate the LAI
of the measured points. The measurement revisit period for the
LAI-2000 was 5 days.

B. Data Processing

1) Multi-Angle Transmittance Calculations: WSN data were
collected from the experimental area between June 25 and
August 24, 2012. The data included the total solar radiation
above the canopy and the transmitted radiation below the
canopy. As mentioned above, three nodes above the canopy
(which received the total solar radiation) were placed within the
experimental area. We assumed that the solar radiation was
uniformly distributed over an area of . Therefore,
any of the three nodes could be integrated with the node data
below to calculate the canopy transmittance.

The canopy transmittance was obtained by calculating the ratio
of the radiation transmitted below the canopy to the total incident
radiation above the canopy at different solar angles throughout
the day. These calculations were performed as follows.

1) The solar elevation angle was calculated based on the
longitude, latitude, and local measurement time.

2) The start and end of the measurements above and below
the canopy were read, and the overlapping time of the two
nodes was calculated. Because the two types of nodes
could work at different times, a uniform interpolation
was applied to the observed sensor values within an
overlapping time interval of 600 s. Therefore, the observa-
tions above and below the canopy were obtained at each
time. These observations were denoted as and ,
respectively.

3) The ratio of the observations below and above the canopy
was calculated at each time to obtain the canopy transmit-
tance at different solar elevation angles

2) LAI Calculations: The gap probability model for planted
canopies was obtained based on the Poisson distribution [7], [29]

h d

In (2), represents the leaf inclination angle, represents
the solar elevation angle, is the distribution function of
the leaf inclination angle, and is a trigonometric
function

In (3), , we combined (2) and
(3) and calculated the logarithms on both sides of (2) to obtain
(4), as follows:

Solving (4) required a continuous observation of ; how-
ever, in practical observations, we could only obtain discrete
transmittance values. Therefore, it was difficult to solve the
integral equation (4) directly. However, (4) can also be written
in a discrete form if

h h

The leaf inclination angle was divided into intervals
with equal intervals within the range of . The length of
each interval was . The average leaf inclination angle of the
interval midpoint was , with . The LAI within the
interval of each leaf inclination angle was . Therefore, (4) can
be written in a discrete form, as follows:

i hi

where is the number of solar elevation angles.
When , then can be obtained by solving the first

Fredholm equation. Next, the canopy LAI can be obtained using

Before calculating the LAI, information regarding the leaf
inclination angle was needed. According to Geol, the leaf
inclination angle distribution patterns can be classified into six
types [30]. Based on the previous results and field data, we
assumed that the probability density function of the crop leaf
inclination angle was vertical as

where the mathematical expectation of is 63.2 .
3) Calculation of the Regional Scale LAI from MODIS and

ASTERData:TheMODISLAIdatawereobtainedwithinthesame
time range as the 2012field experiment. The spatial resolutionwas
1 km and the time resolution was 8 days. The LAI data from
multiple LAINet measurement nodes on the same day and within
pixels that corresponded to the MODIS data were averaged to
obtain the LAI data for each corresponding MODIS pixel.

Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) level 2 products with a resolution of 15 m,
covering a time range fromMay 30 to September 19, 2012 were
obtained from ASTER data’s product distribution service
website (http://gds.ersdac.jspacesystems.or.jp) and 6S model
was used to transfer the ASTER data to the top of canopy
reflectance [31]. All of the ASTER images were used to retrieve
the high-resolution LAI, which will be used to scale up the
ground LAINet observation to 1-km resolution satellite LAI
when comparing it with the MODIS LAI. Because the MODIS
LAI is estimated using 8 days of reflectance, the image data for
the MODIS and ASTER sensors have a 1–2 day lag and the
available images are listed in Table II. The satellite observation
dates are also translated as a DOY (day of the year).
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To relate the high spatial resolution radiometric data (here
referred to as ASTER data) with the corresponding ground
measurements (here referred to as LAINet), Baret et al. proposed
two types of transfer functions that can either be derived from
radiative transfer model inversion or can be purely empirical
[25]. Here, the radiative transfer model inversion method is
adopted to generate the ASTER LAI. The PROSAIL model,
which is coupled with the SAIL [32] model and PROSPECT
models [33], was inverted using a lookup table and a Bayesian
network method as described in more detail in our other studies
[34], [35]. In our method, the ground-measured LAINet LAI
values are used to control the other free variables of the coupled
radiative transfer model.

III. RESULTS AND DISCUSSION

A. Comparing theMeasured Values of LAINet and the LAI-2000

Due to the unexpected battery and communication failures
during the observations with LAINet, and due to cloudy and
rainy days, not all measured LAINet values have corresponding
LAI-2000 observations. Therefore, the number of comparable
data pairs at each site is not the same. For every node deployed
in the field from June 25 to August 24, the observation period
lasts approximately up to 60 days, but due to the unexpected
obstacles, the maximum valid observation days were approxi-
mately 30 and most of the nodes captured 2–3 days of LAI
frequency (Fig. 3). As a result, to compare the measured results
from the two different instruments, we used two adjacent
instruments (within 100 m). The time gaps between the mea-
surements were 1 or 2 days. The results of these comparisons
between the measured LAINet and LAI-2000 values are
presented in Fig. 4.

As shown in Fig. 4, the coefficients of determination ( ) from
comparing the results were between 0.28 and 0.97, with an
average of 0.42. These results indicated that the differences
between the data measured with the two different instruments
varied by site. The highest relevant difference appeared at the
EC06 site. At this site, the data were collected from June 25
( ) to August 11 ( ) with the LAINet
values measured between 1.6 and 3.4. The lowest relevant
difference was observed at the EC14 site, where the greatest
difference between the two instruments was observed when the
LAI values were lower than 1.5 or greater than 3.0.

In Fig. 4, when the LAI was lower than 3.5, the LAI-2000
estimates were greater than the LAINet estimates. Conversely,
when the LAI values were higher than 3.5, the observed LAI-
2000 values were lower than the LAINet values. Unfortunately,
the LAI destructive value for corn crops was not obtained in this
study. Although the current measurements did not clarify in

which the instrument was more accurate, many researchers have
indicated that the LAI-2000 estimates are lower than the true LAI
values. This finding was most notable when the LAI was
relatively large, in which case the observed LAI-2000 values
were much lower than their true values. For example, by
comparing the canopy LAI of broad-leaf and coniferous forests,
Martens et al. [36] determined that the Li–Cor light quantum
meter estimates (which used the direct light method as our
method in this study) were greater than the LAI-2000 estimates.
Compared with the direct measurement method, the Li–Cor light
quantummeter method was the most accurate. Other researchers
have reported similar results. For example, Mason et al. discov-
ered that the ratio of direct measurement values to the LAI-2000
values was approximately 1.5 [10], [12]. We had similar find-
ings. When the LAI was relatively large (higher than 3.5), the
average ratio of the observed LAINet value (with the direct light
principle) to the LAI-2000 value was approximately 1.3. This
result indicated that the measured LAINet value was potentially
closer to the true LAI value of the crop. However, this conclusion
needs to be validated with true ground measurements in the
further work.

B. Time Series Analysis

1) Time Series at the Single Node:Themodels used to describe
the law of dynamic changes of LAI can be categorized as having
linear and nonlinear methods [37], [38]. As this paper does not
focus on the LAI simulationmodel,we simply choose a quadratic
polynomial simulationmodel to describe the dynamic changes of
the LAI. As shown in Fig. 5, the dynamic growth characteristics
for corn crops in the Heihe River experimental area were present
in the observed LAINet data at all of the sites, with the exception
of the EC13 (S02-4), where no continuous observations were
made. A common feature was identified from the dynamic curve
fitting of the LAI at sites EC15 (S01-3), EC14 (S04-1), and EC08
(S06-2). The time series observation results in the Heihe River

TABLE II
SATELLITE IMAGERY DATES FOR THE ASTER AND MODIS DATA

Fig. 3. Valid observation days for each node.
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area indicated that the corn crop LAI reached a maximum value
between DOY 207 and DOY 210, before it began to decrease.

However, at the EC06 (S08-1) site, the fitting results in the
time series were worse than the results for the other three nodes
mentioned above. At this site, the observed LAI value fluctuated
significantly, especially near DOY 232. However, when
comparing the LAINet observations with the LAI-2000 values
(on the days when comparable data were available for both
instruments), a high relative coefficient was obtained, as shown
in Fig. 4(e). Although the abnormal fluctuations at the EC06
(S08-1) site could not be explained, it may be inferred that the
growth condition of the crops around this site was potentially
disturbed by external influence, such as crop management
(irrigation, fertilization, etc.).

Although most of the observed LAINet values potentially
indicated good dynamic crop growth characteristics over time,
there are still some daily LAI values that varied only slightly on
each observation day [Fig. 5(e)]. These variations on consecutive
days potentially resulted from the different weather conditions on
different observation days. Due to daily changes in the weather,
the proportion of the scattered light in the sky varied at different
observation times. The Beer–Lambert law applies only when
describing the attenuation of direct canopy sunlight. The presence
of scattered light creates measurement errors whenmonitoring the
transmittance of the direct light. These errors were then brought
into the LAI estimation process.

Fig. 5 also shows that after the canopy nears the complete
closure, most of the measured LAINet values are higher than the
values of the LAI-2000, which may be due to the fact that the
LAI-2000 measures the transmittance of canopy diffusion light
and is more easily saturated at high LAI values when compared
with the instruments that use the transmittance of beam light to

estimate the LAI. When the corn crop leaves reach a maximum
size, themeasurement results of the LAI-2000will underestimate
the true values. In the published literature [36], the authors
compared the measurement results of the LAI-2000 and other
instruments that use the sun’s direct transmitted PAR to estimate
the canopy LAI. They found that among the different results, the
LAI-2000 usually produced the lowest LAI. Our observation
results are essentially consistent with the existing research.

2) Time Aggregation of the LAINet LAI: To investigate the
reliability of the observations at a single node and to describe the
dynamic characteristics of the crops in the time series, we
selected three nodes with relatively complete observed LAINet
data. The LAI is a structure parameter reflecting the vegetation
growth. The growth of the crop leaves requires time for the
accumulation of material energy. Although there is not a definite
value that properly describes the timing of the leaf growth, the
model simulation results [37], actual measurements [38], and the
repeat-visit period of remote sensing satellites [39] suggested
that most people accepted a time frequency of 3–8 days as an
adequate to describe the dynamic process of leaves. Therefore, in
this section, we selected an aggregating window of 5 days to
process thefiled data. Then,we used themeasured LAI data, with
a time resolution of 5 days, to fit the time-series distribution from
DOY 177 (from June 25 to 29, 2012) to DOY 232 (from August
19 to 23, 2012) (Fig. 6). The solid lines in the plots are the
quadratic curve fitting results.

As shown in Fig. 6, the measured values at a single node that
were averaged by a time window of 5 days represented the
dynamic variations in the corn crop LAI in the experiment area.
The of the quadratic curve fitting results were 0.76, 0.92, and
0.92, respectively, which indicated that the observed values
in the time series were parabolic in shape. These plots clearly

Fig. 4. Scatter plots of the measured LAI values for the LAINet and LAI-2000 observations.
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show the increasing and decreasing LAI values between DOY
207 andDOY212. In addition, themaximumLAIswere 5.9, 4.3,
and 4.2, respectively.

The time aggregation results suggested that an aggregation
time of 5 days might be enough to describe the crop growth

trajectory. The vegetation LAI has different observed time
resolutions at different growth stages. During the rapid growth
or decline stages, the LAI values vary widely. Generally, an
observation resolution of 3 days is appropriate.When the growth
is near or reaches its maximum, a stable period generally occurs.

Fig. 5. Comparison between themeasured LAINet and LAI-2000 data in the time series. Plots (a)–(e) correspond to plots (a)–(e) in Fig. 4, respectively. The solid lines
in plot (a) and (c)–(e) were generated using quadratic curve fitting.

Fig. 6. Time series plots of the measured values at a single node averaged over 5 days.
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During this stable period, the time resolution of the LAI ob-
servations can be reduced to between 5 and 10 days. Here, the
proposed LAINet used a stationary observation method, which
allowed for the availability of daily data, and made it possible to
obtain the average data for different time windows.

C. Comparison With MODIS LAI

In the area corresponding to each MODIS pixel, we deployed
multiple LAINet nodes on the ground. The comparison with
MODIS LAI was conducted in two ways: by directly comparing
the ground value with MODIS LAI and scaling up the ground-
measured LAI to a 1-km resolution using high-resolution imag-
ery as a bridge.

First, we directly averaged the multi-node LAI values in the
corresponding pixels and compared them with the LAI values of
the corresponding MODIS pixels in the time series (Fig. 7).
Although ground-measured LAI values are recommended for
scaling up using a high-resolution image to relate the ground
measurements of the LAI with those derived from the MODIS
data [11], here, we simply present a direct comparison results
from the perspective of the overall numerical data value and the
data’s time trends between the ground LAINet measurement and
theMODIS LAI. The uncertainty of the mismatch of the viewing
footprint and the data scale is discussed below.

In general, the LAI values of the LAINet exhibited identical or
similar trends to those of theMODISLAI values in the time series.
For example, in Fig. 7, theM12,M32,M43, andM44 trends were
the same, whereas the M21 and M33 trends were more consistent
at the growth stage than during the decline stage. Regarding the
MODIS LAI time variations, the dates on which the MODIS LAI
reached its maximum growth stage varied between DOY 195 and
DOY 210. The maximum values of some pixels were obtained
earlier than theLAINetobservation dates.Mostof theLAINetLAI
valueswere greater than theMODISLAI values. This resultmight
be explained by the different observation scales and the spatial
heterogeneity of the objects.

LAI trends of change over time show estimated differences
between LAINet and MODIS and are greater in the descending
phase of the LAI, whichmay result from the principles of the two
estimation methods. The MODIS LAI is retrieved by inverting
the canopy spectral reflectance. After the leaf size reaches its
maximum and begins to decrease, even though the leaf area may
not obviously change, some leaves may turn yellow, which
causes the spectral reflectance of the leaves to decrease in the
green band and to increase in the red band. Therefore, inverting
the satellite data at this time according to the radiation transfer
equation will underestimate the actual LAI; however, LAINet
estimates the LAI by measuring the gap probability under the
canopy at this point, so if the sizes and the number of leaves do

Fig. 7. Comparison of the time series between MODIS LAI products and the LAINet LAI.
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Fig. 8. Mapping the LAI in the experimental area for: (a) a 15-m resolution LAI map from ASTER data, (b) a scaled-up 1-km resolution LAI, and (c) a MODIS 1-km
resolution LAI.

440 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 2, FEBRUARY 2014



not change significantly, the LAI estimated by LAINet cannot
exhibit sharp variations and even the MODIS LAI begins to
descend. Another reason may be that LAINet measures the total
contribution of the leaves and stem, whereas the satellite mea-
sures the leaf reflectance on the top of canopy. Therefore,
inverting the LAI using satellite data is more responsive to
changes in the canopy leaves than LAINet, and the LAINet LAI
values are greater than the estimated values of the MODIS data.

Secondly, we compared theMODISLAIwith a scaled-up LAI
that was retrieved from the ASTER data after spatial aggregation
(Fig. 8). Because the resolution rate between the MODIS and
ASTER LAI was a nonintegral zoom factor, the retrieved 15-m
resolution ASTER LAI [Fig. 8(a)] was aggregated into a 1-km
resolution [Fig. 8(b)] by a bilinear interpolation method that
considers the closest neighborhood of the ASTER pixel
values surrounding the target MODIS pixel [40]. The aggrega-
tion procedure was accomplished by MATLAB Image Proces-
sing Toolbox (The Math Works, Inc., Natick, MA, USA). The
MODIS LAI products are also shown in Fig. 8(c).

We compared the two types of LAIs based on the time series of
each pixel. As shown in Fig. 9, the LAIs of two satellite products
had the same trends for the time series of most pixels. Especially
for the 11 pixels (f–p) from M22 to M44 pixel, in all of these 11
pixels, the two types of LAIs are very close to both in value and in
trend. For the other five pixels (a–e), although the trends of the
LAI are very similar, the MODIS LAI is greater than the
inversion result of the ASTER data. The deviation is partly
explained by the singular large values of the MODIS LAI data.

For example, in the three pixels (c–e), the MODIS LAI suddenly
increased abnormally onDOY192. Another primary reasonmay
be explained by the complexity of land cover types. In the five
pixels (a–e), many residential areas were scattered. When the
ASTER inversion was performed on these pixels, they were
masked as nonvegetation areas. The inversion of the LAI by
MODIS did not distinguish the land cover types of the subpixels
in the MODIS pixel.

As some vegetables, fruit trees, and scattered woodlands are
distributed in these regions, the LAI value inverted by MODIS
was higher than the LAI value of the ASTER data in these
regions. This deviation in the inversion result may be caused by
the complexity of land cover types and was not obvious in other
pixels due to the decrease in the proportion of residential areas.
When comparing the inversion results of the two satellites for all
of the time series in the whole region, we also found that the
inversion results of the ASTER data were slightly lower than the
MODIS LAI on the whole (Fig. 10) with an and

.
The 2012 experiment sought to determine if better spatial

representation could be obtained by carefully identifying the
position and number of sensor nodes when deploying the
MODIS pixels to cover more land types, considering the het-
erogeneity of the vegetation cover. Adequate spatial sampling
will be conducted in future studies in the research area with the
goal of obtaining a statistically significant canopy gap probabili-
ty. In traditional studies, the spatial distribution of the canopy gap
probability, or gap size, is measured manually. In the method

Fig. 9. Comparison of the MODIS LAI and aggregated 1-km resolution ASTER LAI in a time series.

QU et al.: CROP LEAF AREA INDEX OBSERVATIONS WITH A WIRELESS SENSOR NETWORK 441



proposed in this paper, this is accomplished by deploying a high
number of nodes under the canopy.

IV. CONCLUSION

We developed an automatic system for measuring the vegeta-
tion LAI with WSN technology. Continuous time series LAI
observations were conducted on corn crops in the Heihe River
basin. A comparative analysis was conducted between different
ground measurement instruments and data obtained from
MODIS.

The WSN technology is particularly useful for data collection
and remote transmission because it can improve the automotive
data acquisition and reduce human disturbance. The LAI mea-
surement method proposed in this paper can be used to measure
the vegetation canopy structure parameters over long periods at a
regional scale. Therefore, the method has the potential to support
ground validation for surface parameters obtained by the remote
sensing.

We found that the measured LAINet values may be more
accurate than the LAI-2000 values, particularly when the LAI is
greater than 3.5. The determination coefficient ( ) between the
observed LAINet andLAI-2000 values ranged from 0.28 to 0.97.
In general, when the LAIwas greater than 3.5, the observed LAI-
2000 values changed dynamically over a small range, which did
not fully reflect the dynamic LAI changes. Regarding the average
value of the corresponding observed data, the observed LAINet
value was greater than the LAI-2000 value (with a ratio of
approximately 1.3). The comparison results between the mea-
sured and true LAI-2000 values reported in the literature showed
that when the LAI is , the LAI-2000 underestimates the true
LAI values. The ratio of the true-to-measured values is approxi-
mately 1.5. This is consistent with the experimental results
presented in this paper.

As discussed above, one advantage of LAINet is its ability to
provide continuous observations of the vegetation growth process.
TheLAI time series observation results indicated that the observed
LAINet data properly described the growth process for corn crops
in the Heihe River watershed. The data that the LAI reached its
maximum matched the satellite observation data in 2012.

We calculated the observed LAINet value and compared it
with the satellite data from two aspects, which included a direct
method and a scaled-up method. When directly comparing the
ground LAINet LAI with a 1-km resolution MODIS LAI, we
found that the LAINet data, which were greater than the MODIS
data, were similar to the MODIS LAI results regarding changes
over time. When the aggregated ASTER LAI derived from a
radiative transfer model inversion into a 1-km resolution, the
ASTER LAI in most pixels behaved similar to the MODIS LAI
values and the time series trends. However, we also observed that
there was a slight discrepancy in the few of the pixels. The
inconsistencies might be explained by the different footprints of
the observed objects, the differences between the land-cover
classes, and the observation time resolution. In the future, we
plan to deploy the LAINet observation nodes more carefully to
obtain actual surface cover conditions.

Light diffusion significantly affected the observed LAINet
values. Currently, many instruments or observation methods are
used to obtain the proportion of light diffusion. In the future, we
plan to determine the proportions of scattered light at different
times to increase the precision of the LAI inversionwhenLAINet
is used for observations.

Some other factors that can improve the robustness of LAINet
may be considered for further validation. For example, the real-
time data storing strategy may prevent the data from being lost
in the case where a GPRS network does not work properly. The
low energy consumption allows the instruments to function for
extended periods. However, due to the operational capability of
the power supply system (lithium batteries), the energy con-
sumption is strongly affected by the temperature. The expected
working hours were not fully achieved in the arid environment of
the research area, which might have resulted from high tem-
peratures in the corn canopy when the ambient air temperatures
were high. We plan to improve the instrument performance and
minimize the manual maintenance in the future studies. With
these improvements, the instruments may function continuously
for longer periods.
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