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This study empirically compared noise reduction techniques for the normalized difference vegetation
index (NDVI) time-series based on a new absolute measure using a time-series of 16-day composite NDVI
images extracted from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products cov-
ering the Poyang Lake area in China. We proposed an approach to accurately extract representative NDVI
temporal profiles for the 12 land cover cluster types by clustering profiles, selecting optimal number of
clusters, merging and labeling clusters, and selecting the representative NDVI profiles. The geometric
average of the mean average distance between the reconstructed profile and the raw profiles, and the
mean average distance between the reconstructed profile and the upper envelope (Dg(nr,c)) was selected
as the most appropriate measure substitutive to RMSE for the evaluation of the noise reduction effects,
when the ‘true’ profiles were not available. The running median, mean value, maximum operation, end
point processing, and Hanning smoothing (RMMEH) filter and iterative Savitzky–Golay filter were the
two most appropriate noise reduction techniques for the NDVI temporal profiles of the study area in
the evaluation of noise reduction effects by the seven techniques. The robust framework using the pro-
posed approach for the accurate extraction of representative NDVI temporal profiles and (Dg(nr,c)) in this
study, is applicable in the evaluation of noise reduction effects using different techniques and in other
study areas.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

The time-series normalized difference vegetation index (NDVI)
images derived from multi-temporal coarse remotely sensed data
with coarse spatial resolution have been used for characterizing
vegetation phenology and land cover changes (Moody and Johnson,
2001). NDVI has been most widely used to link to the structural
properties and photosynthetic activity of vegetation (Roderick
et al., 1999; Lu et al., 2001; Beck et al., 2006). Due to the response
of phenological dynamics in terrestrial ecosystems to climatic and
hydrologic dynamics, NDVI time-series have been utilized to reveal
global carbon, nitrogen, and water cycles, spatial shift of bio-cli-
matic zones, and phenological changes in response to climate fluc-
tuations and human activities (Myneni et al., 1997; Jönsson and
Eklundh, 2002; Bradley et al., 2007). The derivation of phenological
metrics, decomposition of temporal NDVI profiles into inter-an-
nual, seasonal, and abrupt trends, and multi-temporal classifica-
tion are three major analytical approaches using the NDVI
time-series (Cleveland et al., 1990; Knight et al., 2006; Verbesselt
et al., 2010; Zhang et al., 2012). Recently, the number of studies
using the NDVI time-series in wetland ecosystems has increased
aiming at understanding the detailed temporal dynamics in wet-
land cover changes such as inundation and phenology of wetland
vegetation (Rodgers et al., 2009).

It is well known that the effect of cloud contamination, atmo-
spheric variability of dust, ozone, or aerosols, bidirectional effects,
sensor viewing angles, solar angles, snow cover, and problems with
instruments often degrade the NDVI time-series (Atkinson et al.,
2012). Sudden drops, with abnormally low NDVI values in the
NDVI time-series generated by these effects, have often prevented
accurate analysis of the dynamics in land and water cover changes.
Although the time-series NDVI images are often composites for a
period of certain days to reduce these effects, significant residual
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effects remain in them (Ma and Veroustraete, 2006). Since the
accuracy of the time-series analysis of NDVI images depends on
the quality of the input data, reduction of these effects from the
NDVI time-series is critically important.

To reconstruct high quality NDVI time-series, a number of tech-
niques have been developed and applied over the last 25 years.
These techniques can generally be categorized into four broad
groups: (1) threshold-based techniques, such as the best index
slope extraction (BISE) filter (Viovy et al., 1992); (2) Fourier-based
fitting techniques, such as fast Fourier transformation (Sellers
et al., 1994); (3) asymmetric function fitting techniques, such as
the asymmetric Gaussian function (AG) fitting (Jönsson and Ekl-
undh, 2002), the weighted least squares linear regression (Swets
et al., 1999), double logistic function (DL) fitting (Beck et al.,
2006), ARMD3-ARMA5 (ARM3-5) filter (Filipova-Racheva and
Hall-Beyer, 2000), and iterative Savitzky-Golay (GL) filter (Chen
et al., 2004); and (4) iterative simple mathematical operation tech-
niques such as the 4253H Twice (4253HT) filter (Velleman, 1980),
maximum-value iteration (MVI) filter (Ma and Veroustraete, 2006),
and RMMEH filter (Jin and Xu, 2013). Several studies have provided
useful information in choosing appropriate noise reduction tech-
niques for the NDVI time-series by comparing the performance
of multiple noise reduction techniques (Dijk et al., 1987; Jönsson
and Eklundh, 2004; Hird and McDermid, 2009). Their inconsistent
results have suggested that effects of noise reduction varied in dif-
ferent land cover types and study areas, therefore evaluation of
noise reduction effects might be necessary before conducting each
application.

The effects of noise reduction have been evaluated through the
analysis of NDVI temporal profiles. A number of studies have man-
ually selected certain number of sample profiles for each land cov-
er class (Bradley et al., 2007), or randomly extracted large number
of pixels then manually classified them into land cover classes
(Chen et al., 2004). However there have been a few studies on
time-efficient approaches for the extraction of representative tem-
poral profiles that are comprehensive in the entire study area, even
though the extraction is an essential step for accurate evaluation of
noise reduction effects.

Most of the studies evaluating the performance of these noise
reduction techniques have depended on visual interpretation of
NDVI profiles. A few studies have quantitatively evaluated the
noise reduction performance based on different criteria, such as
the root mean square error (RMSE) between modeled and noise-
added profiles, and the difference of phenological metrics derived
from modeled and noise-added profiles (Hird and McDermid,
2009), by regarding the modeled profiles as ‘true’ profiles. How-
ever, realistic noise-added profiles are extremely difficult to gener-
ate, because of the influence of the actual noise by a number of
factors described above. In actual NDVI temporal profiles, the
amplitude and frequency of positive and negative noise are differ-
ent, and in general noise are biased negatively (Ma and Veroustra-
ete, 2006; Julien and Sobrino, 2010).

Instead of using noise-added profiles, Beck et al. (2006) evalu-
ated the effects of noise reduction using observed and recon-
structed profiles. Although it was based on the RMSE between
the observed and reconstructed profiles, the evaluation was rather
subjective because there were no ‘‘true’’ noise-free profiles that
could be derived from the observed profiles (Julien and Sobrino,
2010). In such situation, the RMSE was not an appropriate measure
for comparing the observed and reconstructed profiles, although
the RMSE is an absolute measure when the modeled profiles were
compared with the reconstructed profiles derived from synthesiz-
ing noise-added profiles. Instead of the RMSE, two noise reduction
measures calculated from the observed and reconstructed NDVI
profiles were proposed in Julien and Sobrino (2010). However,
the appropriateness of these measures for the evaluation of noise
reduction effects was not examined. Thus, there is a significant
need for the development of an absolute measure for the evalua-
tion of noise reduction effects using observed and reconstructed
NDVI time-series.

This study aims to empirically compare noise reduction tech-
niques for NDVI time-series based on a new absolute measure
using a time-series of 16-day composite NDVI images extracted
from the Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) products covering the Poyang Lake area in China. First,
an approach to the extraction of representative NDVI temporal
profiles is explored. Using the modeled profiles generated from
the extracted profiles, we develop a robust measure for the abso-
lute evaluation of noise reduction effects when ‘true’ profiles are
unavailable. Finally, the seven noise reduction techniques, includ-
ing those applied in Hird and McDermid (2009) and the running
median, mean value, maximum operation, end point processing,
and Hanning smoothing (RMMEH) filter (Jin and Xu, 2013), a sim-
ple automated compound filter that does not require ancillary data,
are compared in the evaluation of noise reduction effects.
2. Study area and datasets

2.1. Study area

The study area is located in the Poyang Lake area in China, cov-
ering approximately 16,900 km2 (Fig. 1). We conducted a number
of remote sensing studies to monitor environmental changes in
this area, such as urbanization, inter-annual changes in lake inun-
dation, and seasonal changes in wetland vegetation cover (Hui
et al., 2008; Michishita et al., 2012a; Michishita et al., 2012b; Mich-
ishita et al., 2012c; Wang et al., 2013; Chan and Xu, 2013). Poyang
Lake (116�130E, 29�90N), the largest freshwater lake in China
located in the northern part of Jiangxi Province, shows a unique
hydrological pattern throughout the year. The water from five ma-
jor rivers fills the lake and inundates all the lowland marshlands
between April and June. The flood backflows from the Yangtze Riv-
er increase the water levels in the lake enough to reach their peaks
between July and September. Vast areas with wetland vegetation
emerge after the lake water subsides in October and November.
Disconnected small lakes maintain different water levels between
December and February (Guo et al., 2005).

This study area is suitable for the analysis because of its rich-
ness in the variety of land use and land cover types. Vegetated wet-
lands are dominated by the Carex, Miscanthus, and Phragmites
species. Other wetland components include mud, sands, and dead
algae. Flatlands between the lake and needle leaf forests are used
for rice paddies in the central and southern part of the lake, and
for cotton fields in the northern part. Oil seed rapes are planted
in the western and northwestern parts of the lake. Two large cities
with populations of about five million, Nanchang and Jiujiang, are
located in the northwestern and southwestern parts of the lake,
respectively (Fang et al., 2006).
2.2. Datasets

We used 263 NDVI time-series images extracted from the Terra
MODIS Vegetation Indices 16-Day L3 Global 250 m (MOD13Q1)
products (version 005) covering the study area over a period of
11 years from October 15, 2000 to March 5, 2012. These products
were acquired from the Reverb | ECHO operated by NASA
(<http://reverb.echo.nasa.gov/reverb/>). The NDVI images in the
products were derived from the surface reflectance data that were
atmospherically corrected taking into account the effects of mole-
cule scattering, ozone absorption, and aerosols (Huete et al., 2002).
Quality assurance images were also extracted for the performance
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Fig. 1. Study area: Poyang Lake area, China. Points 1–12 are the sample locations for the comparisons chosen through the cluster detection, labeling of the clusters, and
calculation of a representativeness index from the NDVI time-series.
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of the SG filter. All data used in this study were reprojected to
Universal Transverse Mercator (Zone 50 N, WGS-84) and stacked
into single layered image.

This study used supplemental materials to define cluster labels,
merge and label clusters, and assess labeling accuracy in the selec-
tion of representative NDVI profiles, and to select the pixel loca-
tions of inter-annual and seasonal land cover change events.
They included: (1) field records of the representative land cover
types and their changes around the Poyang Lake in December,
2007 and April and May, 2008 (Michishita et al., 2012a,b,c); (2)
30 time-series Landsat-5 Thematic Mapper (TM) and Landsat-7 En-
hanced Thematic Mapper Plus (ETM+) images observed between
1987 and 2011 (Appendix 1); (3) two high accuracy land cover
classification maps derived from the ETM+ image acquired on Au-
gust 22, 2000 (Niu et al., 2009; provided by the Institute of Remote
Sensing Applications, Chinese Academy of Sciences; Appendix 2
(a)) and the TM image derived from the TM image acquired on
October 26, 2009 (Gong et al., 2013; downloaded from the Finer
Resolution Observation and Monitoring – Global Land Cover web-
site, URL: http://data.ess.tsinghua.edu.cn/index.html; Appendix 2
(b)); (4) multi-temporal high spatial resolution images from Goo-
gle Earth and Microsoft Bing Maps acquired in 2002, 2003, and
2005–2011 (Appendix 3); (5) land use map in the Jiangxi Map Col-
lection (Editing Committee of Jiangxi Map Collection, 2008); and
(6) results of interviews with the local residents and researchers
on agriculture and wetlands (Appendix 4 for the interview form).
3. Method

Fig. 2 summarizes the overall procedure we followed in this
study. The process started with the exploration of an approach
for extracting representative NDVI temporal profiles (Step 1 in
Fig. 2). In the second step (Step 2 in Fig. 2), we developed a mea-
sure of noise reduction effects when the ‘true’ profiles were not
available. Finally, the effects of noise reduction by seven tech-
niques were evaluated and compared both visually and quantita-
tively in the third step (Step 3 in Fig. 2). Every step in Fig. 2 is
described in details below.
3.1. Exploration of an approach to extracting representative NDVI
temporal profiles

Extraction of a set of NDVI temporal profiles that are represen-
tative and comprehensive in the study area from the original time-
series NDVI images is an important step in the evaluation of noise
reduction effects. This study explored an approach to extracting
representative NDVI temporal profiles, consisting of NDVI profile
clustering, selection of optimal number of clusters, cluster merg-
ing, labeling accuracy assessment, and selection of representative
NDVI profiles. Details for each step are described below.

The iterative self-organizing data analysis (ISODATA) algorithm,
an unsupervised clustering algorithm, was used to derive the clus-
ters of the NDVI temporal profiles for 23 time-series images in
2009. Therefore, we assumed that land cover changes from one
cluster class to another were insignificant. The ISODATA algorithm
initially determines a test set of cluster centers and assigns pixels
to the clusters with minimum Euclidean distance in data space. In
each subsequent iteration, the process first calculates the statistics
of the current cluster set, then splits, merges, and deletes the clus-
ters on the basis of modeling thresholds. After the cluster adjust-
ment is completed, new cluster centers are determined and the
process repeated. The process continues iteratively until the num-
ber of pixels with changes in each cluster falls below a change
threshold or until the iteration limit is reached (Smith, 2011).

Because the optimal number of clusters in ISODATA clustering
cannot be defined in advance, an estimation of the optimal number
of clusters from the observed data is necessary. Using the stacked
NDVI time-series image, we made a series of clustering runs by
changing the number of clusters from 12 to 100. The Jefferies–Mat-
usita (J–M) distance between defined clusters in each run was used
as the measure of separability when comparing the various runs in
this study (Richards, 1993). The J–M distance is asymptotic to

ffiffiffi
2
p

,
and the values

ffiffiffi
2
p

suggests complete separability. The average and
minimum J–M distance in each run were calculated. The average J–
M distance indicates the overall separability among all clusters,
while the minimum J–M distance reflects the distance between
most similar clusters. Therefore the optimal number of clusters
used in further analysis was decided on the basis of a high average
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and a high minimum J–M distance. Clustering runs were made un-
der the following conditions for the modeling parameters deter-
mined from our expert knowledge: maximum number of
iterations (10); change threshold (5%); minimum number of pixels
in a class (1); maximum class standard deviation (1); minimum
class distance (5); and maximum number of merge pairs (2). Sen-
sitivity analysis of the modeling parameters was not conducted be-
cause it was not the main focus of our study.

We defined 12 thematic labels of land cover for the clusters
with the references from the two high accuracy land cover classi-
fication maps derived from the TM image in 2000, the ETM+ image
in 2009, and the land use map in the Jiangxi Map Collection (Edit-
ing Committee of Jiangxi Map Collection, 2008). The labels in-
cluded: (1) lake/river (L/R); (2) marshland (MSL); (3) urban/sand
(UR/S); (4) vegetated wetland (VW); (5) suburban/rock (SU/R);
(6) cotton (COT); (7) rice paddy 1 (mixture of single- and double-
cropping; RP1); (8) rice paddy 2 (single-cropping; RP2); (9) rice
paddy 3 (double-cropping; PR2); (10) oil seed rape (OSR); (11)
coarse needle leaf forest (CNF); and (12) dense needle leaf forest
(DNF). An optimal number of clusters were merged into 12 clusters
based on the J–M distance of each cluster pair and our visual
inspection, and the labels were put on the clusters. The average
and minimum J–M distances were again calculated for the merged
12 clusters to evaluate the separability of the clusters.

Labeling accuracy of the 12 land cover clusters was assessed
through the comparison of the cluster maps with the validation
samples. Because the accuracy of the samples was very important
in the accuracy assessment, the samples collected accounted for
the land and water cover changes. For this purpose, a number of
supplemental materials described in Section 2.2, such as the field
records, the time-series TM and ETM+ images, the multi-temporal
high spatial resolution images, and the interview results, were
used for the collection. Altogether 500 samples (refer to the second
row of Table 2 for the number of samples for each clusters), col-
lected using the stratified random sampling scheme, were used
to generate a sample error matrix. Because the numbers of samples
vary for different land cover clusters in the stratified random
scheme, the sample error matrix was converted into a population
matrix to compute unbiased statistics (Pontius and Millones,
2011). The accuracy assessment was based on the overall accuracy,
kappa coefficient, producer’s accuracy, and user’s accuracy calcu-
lated from the population matrix.

The 10 most representative NDVI temporal profiles were se-
lected for each land cover cluster based on the average of the root
mean square error (RMSE) produced by an NDVI temporal profile
when it was compared with all other temporal profiles in the clus-
ter. Because the representative NDVI temporal profiles tended to
produce low average RMSE values, the profiles with the 10 lowest
values were selected as representative temporal profiles for each
land cover cluster. Because we derived the clusters of the NDVI
temporal profiles for 23 time-series images in 2009, we did not
manage to show the clusters that changed between 2009 and other
years in the clustering process. However, such profiles can be ex-
tracted as representative profiles if there is a significant number
and they are distinct from other profiles. Because this measure is
theoretically the same as the endmember average RMSE for the
multiple endmember spectral mixture analysis (MESMA) (Denni-
son and Roberts, 2003), this study used VIPER Tools, a MESMA
plug-in for ENVI (Roberts et al., 2007) for calculating the measures.

3.2. Development of a measure of noise reduction effects

This study developed a measure for noise reduction effects
when the ‘true’ profiles were unavailable, by generating modeled
and noise-added NDVI profiles, applying noise reduction tech-
niques to the noise-added NDVI profiles, and calculating and com-
paring the RMSE and candidate measures.

The ‘true’ NDVI profiles were modeled by synthesizing the raw
NDVI values in the representative temporal profiles selected
following the procedure in Section 3.1. Taking the pixel domination
of each land cover cluster summarized in the second column of
Table 2 into account, we modeled the NDVI profiles for four
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representative land cover types in the study area: (1) lake and river
(L/R); (2) vegetated wetland (VW); (3) rice paddy 1 (RP1); and (4)
coarse needle leaf forest (CNL). The modeled profile for each land
cover type was generated by averaging the raw values on the same
composite target dates in all the representative annual profiles of
the land cover type for 11 years. Multi-year averaging could mini-
mize the irregular spikes and drops in the original profiles. We
used multi-year average profiles under the hypothesis that the
class did not change in different years in the original profiles.
The modeled NDVI profiles are drawn with solid black lines in
Fig. 4.

Noise was artificially added to the modeled NDVI temporal pro-
files. In actual NDVI temporal profiles, amplitude and frequency of
positive and negative noise are different, because cloud contamina-
tion, atmospheric variability, bidirectional effects, sensor viewing
angles, solar angles, snow cover, and problems with instruments
cause the negatively biased noise in NDVI temporal profiles (Ma
and Veroustraete, 2006; Julien and Sobrino, 2010). Therefore,
based on the visual interpretation of the raw NDVI temporal pro-
files, we experimentally generated noises with different distribu-
tions for positive and negative noise. Positive Gaussian noise
with a standard deviation of 0.1 was added to each modeled tem-
poral profile at two points (8.6% in a profile) randomly selected
from the profile, and negative Gaussian noise with a standard devi-
ation of 0.2 was added to each modeled temporal profile at seven
points (30.4% in a profile) randomly selected from the profile.
The noise-added NDVI profiles are drawn with the black points
and dotted lines in Fig. 4.

The following seven noise reduction techniques were applied to
the four noise-added NDVI temporal profiles: (1) RMMEH filter (Jin
and Xu, 2013); (2) SG filter (Chen et al., 2004); (3) AG filter (Jöns-
son and Eklundh, 2002); (4) DL filter (Beck et al., 2006); (5) 4253HT
filter (Velleman, 1980); (6) MVI filter (Ma and Veroustraete, 2006);
and (7) ARM3-5 filter (Filipova-Racheva and Hall-Beyer, 2000). The
characteristics of the selected noise reduction techniques are
described in Table 1. Fourier-based techniques were not included
because of their inability to reduce the noise of irregular or asym-
metrical temporal patterns commonly seen in non-vegetation
profiles (Hird and McDermid, 2009). We also excluded threshold-
based techniques because of the difficulty in their threshold tuning
(Lu et al., 2007). Therefore, this study compared four asymmetric
function fitting techniques (SG, AG, DL, and ARM3-5 filters) and
three iterative simple mathematical operation techniques
(RMMEH, 4253HT, and MVI filters).

In the application of the SG filter, two modeling parameters, the
half size of the smoothing window and the degree of the smooth-
ing polynomial, were set to 4 and 2 in fitting the long-term change
trend, and 3 and 3 in the iterative fitting of the NDVI profiles,
respectively. AG and DL filters were applied with TIMESAT soft-
ware (version 3.0; Eklundh and Jönsson, 2010). We applied an
MVI filter with the setting of a 10% multi-year average as set in
Table 1
Noise reduction techniques selected for the comparisons.

Technique Description

RMMEH filter (RMMEH) (Jin and Xu, 2013) A series of running medians,
weighted moving average

Iterative Savitzky-Golay filter (SG) (Chen et al., 2004) Iterative weighted moving av
Asymmetrical Gaussian function fitting (AG) (Jönsson

and Eklundh, 2002)
Regression of the local fitting
global function

Double logistic function-fitting (DL) (Beck et al., 2006) Fitting with a double logistic
4253H, twice filter (4253HT) (Velleman, 1980) A series of running medians
Mean-value iteration filter (MVI) (Ma and

Veroustraete, 2006)
Iterative replacements of eac
on a threshold value

ARMD3-ARMA5 filter (ARM3-5) (Filipova-Racheva
and Hall-Beyer, 2000)

A series of an autoregressive
mean filter with a window s
Hird and McDermid (2009). Three similar noise-added annual pro-
files were joined together, to meet the model requirements of the
AG and DL filters in TIMESAT. The reconstructed profiles in the sec-
ond year were extracted for further analysis.

This study regarded the RMSE as the absolute measure in the
evaluation of noise reduction effects for the seven techniques.
The RMSEs between the reconstructed profiles for the seven tech-
niques and modeled profiles were derived for the four profiles of
representative land cover types. The RMSEs of the representative
profiles for the seven techniques were compared on the basis of
land cover types and noise reduction techniques. The RMSEs were
also compared with the following four measures in this analysis.
All four measures range from zero to two.

The first and second measures, the distance from the resulting
NDVI temporal profiles to the noise-added profiles and from the
upper envelope profiles to the noise-added profiles, were devel-
oped on the basis of the two criteria introduced in Julien and Sob-
rino (2010). The first measure was designed to evaluate the fidelity
of the reconstructed profiles to the noise-added profiles. The mean
value of the average distance between the reconstructed NDVI
temporal profiles and the noise-added profiles for a noise reduc-
tion technique (nr) in a cluster (c) denoted by Do (nr,c) was defined
as follows:

Doðnr; cÞ ¼
P

p

P
tjNDVInr;c;t;p � NDVIc;t;pj

np � nt
ð1Þ

where NDVInr, c, t, p is the NDVI value reconstructed with an nr filter
in cluster c at time t at location p, NDVIc, t, p is the original NDVI va-
lue in cluster c at time t at location p, np is the total number of sam-
ple locations in a cluster (set to 1 in this calculation), and nt (set to
23 in this calculation) is the total number of time points. A smaller
Do(nr,c) means a better fit to the noise-added NDVI temporal
profile. The second measure was designed taking into account the
decrease in the NDVI values caused by negative noise. Therefore,
the measure for this criterion (De(nr,c)) was defined as the mean va-
lue of the average distance between the NDVI profiles composed of
the highest NDVI values among all the NDVI values reconstructed
using the seven techniques and the noise-added profiles for a noise
reduction technique (nr) in a cluster (c):

Deðnr; cÞ ¼
P

p

P
tjNDVInr;c;t;p � NDVImax;c;t;pj

np � nt
ð2Þ

where NDVImax, c, t, p is maximum NDVI value among the recon-
structed values with the seven techniques in cluster c at time t at
location p. A better fit to the upper envelope temporal profile can
achieve a smaller De(nr,c).

We designed the third and fourth measures to comprehensively
evaluate the noise reduction effects using the above two measures
by averaging them arithmetically and geometrically. The
arithmetic average calculation, maximum operation, endpoint processing, and

erage filter using the weights determined with polynomial regression
s by nonlinear functions at intervals around local maxima and minima using a

function using statistical metrics
with different sizes and a weighted average filter
h NDVI value with the average of NDVI values on prior and posterior dates based

running median filter with a window size of three and an autoregressive running
ize of five



Table 2
Population confusion matrix of 12 merged NDVI clusters. PA and UA refer to producer’s accuracy and user’s accuracy. Overall accuracy and kappa coefficients were 88.7% and
0.872, respectively.

Comparison (number of samples)

L/R (60) MSL (20) UR/S (10) VW (40) SU/R (20) COT (20) RP1 (80) RP2 (60) RP3 (40) OSR (10) CNF (80) DNF (60) Comp total UA (%)

Reference (pixel population)
L/R (35878) 0.110 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.114 96.4
MSL (13133) 0.004 0.036 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 85.7
UR/S (6931) 0.003 0.001 0.013 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.022 60.0
VW (24818) 0.002 0.000 0.000 0.077 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.079 97.4
SU/R (9489) 0.001 0.000 0.001 0.000 0.023 0.000 0.001 0.003 0.000 0.000 0.001 0.000 0.030 75.0
COT (11660) 0.000 0.000 0.000 0.000 0.000 0.026 0.005 0.003 0.000 0.000 0.003 0.000 0.037 70.8
RP1 (50186) 0.000 0.000 0.000 0.000 0.000 0.002 0.142 0.004 0.002 0.000 0.007 0.002 0.159 89.0
RP2 (39620) 0.000 0.000 0.000 0.000 0.002 0.002 0.007 0.106 0.002 0.000 0.007 0.000 0.126 84.5
RP3 (25451) 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.073 0.000 0.000 0.000 0.081 90.5
OSR (8070) 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.020 0.002 0.000 0.026 76.9
CNF (50788) 0.000 0.000 0.000 0.000 0.000 0.002 0.006 0.004 0.000 0.000 0.144 0.004 0.161 89.5
DNF (38976) 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.004 0.118 0.124 95.0
Ref Total 0.120 0.039 0.014 0.082 0.026 0.033 0.170 0.126 0.077 0.020 0.168 0.124 1.000
PA (%) 91.5 91.1 91.3 93.3 86.1 80.2 83.2 84.5 94.4 100.0 86.0 94.8

Overall accuracy (%) = 88.7.
Kappa coefficient = 0.872.
Allocation disagreement = 0.09.
Quantity disagreement = 0.03.

22 R. Michishita et al. / ISPRS Journal of Photogrammetry and Remote Sensing 91 (2014) 17–28
arithmetic mean (Da(nr,c)) and geometric mean (Dg(nr,c)) of Do(-
nr,c) and Do(nr,c) were respectively given by:

Daðnr; cÞ ¼ Doðnr; cÞ þ Deðnr; cÞ
2

ð3Þ
Dgðnr; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Doðnr; cÞ þ Deðnr; cÞ

p
: ð4Þ

A better fit to both the upper envelope and noise-added profiles
gives smaller Da(nr,c) and Dg(nr,c).

The relationship between these four measures of the base RMSE
was examined through calculating the correlation coefficient (R2).
R2 was calculated for each profile using the four measures and
RMSEs for all of the seven noise reduction techniques. The measure
with the highest average R2 of the four temporal profiles against
the RMSEs was selected as the most appropriate measure in the
evaluation of noise reduction when the ‘true’ profiles were not
available, and was used in the analysis described in Section 3.3.
3.3. Evaluation of noise reduction effects of seven noise reduction
techniques

In the last part of the analysis, this study evaluated the noise
reduction effects of the seven noise reduction techniques. The se-
ven noise reduction techniques used in the analysis described in
Section 3.2 were applied to the 120 representative NDVI temporal
profiles (10 profiles, 12 land cover clusters) extracted according to
the procedure in Section 3.1. The quality assurance images im-
ported from the MODIS products were used in the application of
the SG filter. The same modeling parameters for the SG and MVI fil-
ters were set for this analysis. The first five NDVI values in 2000
and last five values in 2012 were excluded from the resultant NDVI
temporal profiles to avoid the effects of endpoint processing for the
seven techniques. Thus, the consecutive comparisons were made
using the profiles for the 11 years between 2001 and 2011.

The effects of noise reduction using the seven techniques were
compared against each other using the raw and reconstructed
NDVI temporal profiles both visually and quantitatively. In the vi-
sual comparison, we used the most representative profiles at
points 1–12 in Fig. 1. Not only were the differences in the noise
reduction effects for the seven techniques examined, but also the
difference for the particular techniques in the 12 land cover
clusters.

The quantitative evaluation of the noise reduction effects for
the NDVI temporal profiles by the seven noise reduction tech-
niques was performed using the most appropriate measure se-
lected according to the procedure in Section 3.2. In the
calculation of the measure, np and nt were set to 10 and 253,
respectively. The overall performance of the noise reduction for
each technique was evaluated on the basis of the average of the se-
lected appropriate measure over the 12 land cover clusters.

4. Results

4.1. Exploration of an approach to extracting representative NDVI
temporal profiles

4.1.1. NDVI clustering and selection of optimal number of clusters
Fig. 3 presents the cluster separability based on the J–M dis-

tance in the 89 separate clustering runs (12–100 clusters). The very
high average J–M distance (black points and solid line in Fig. 3)
indicated almost complete separability (nearly equal to

ffiffiffi
2
p

) in all
of the 89 runs, although it increased very slightly. The minimum
J–M distance (gray points and solid line in Fig. 3) fluctuated at
around 1.33 and it showed a decreasing trend as the number of
clusters increased (gray dotted line in Fig. 3). It reached its highest
peak for the run with 36 clusters. Thus, 36 is statistically the most
reasonable choice for the cluster numbers in clustering the stacked
NDVI time-series image.

4.1.2. Cluster merging and labeling accuracy assessment
The 36 clusters generated above were merged into 12 clusters

with the reference for the J–M distance for each cluster pair and
supplemental materials explained in Section 3.1. The merged clus-
ters achieved an average J–M distance of 1.40 and a minimum J–M
distance of 1.32, indicating sufficient separability for the rest of the
analysis.

Table 2 shows the population confusion matrix of 12 merged
NDVI clusters. The overall accuracy and kappa coefficient were
88.7% and 0.872, respectively. The producer’s accuracy for the land
cover clusters ranged between 80.2% (COT) and 100.0% (OSR). The
lowest producer’s accuracy for COT was caused by its being
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confused with RP1, RP2, and CNF. On the other hand, the user’s
accuracy varied more remarkably, ranging from 60.0% (UR/S) to
97.4% (VW). Misclassification of L/R, MSL, VW, SU/R, and RP2 re-
sulted in the low user’s accuracy for UR/S. The user’s accuracy of
70.8% for COT stemmed from its misclassification of RP1, RP2,
and CNF. Lower producer’s and user’s accuracy for COT suggested
the difficulty in clustering the NDVI temporal profiles, merging
the clusters, and labeling the clusters for this land cover type. It
can be inferred that the classification accuracy in the representa-
tive clusters depended on the number of small clusters included
in the merged clusters, because the representative clusters with
larger variability in their profiles could cause the confusion with
other clusters.

4.2. Development of a measure of noise reduction effects

4.2.1. Application of noise reduction techniques to noise-added NDVI
profiles

Fig. 4 illustrates the modeled, noise-added, and reconstructed
NDVI temporal profiles by the seven noise reduction techniques
for the four representative land cover types. The seven noise reduc-
tion techniques showed some distinguishable characteristics in
their noise reduction effects. The RMMEH and SG filters tended
to show similar trends in the corrected profiles and have higher
reconstructed values than the other five techniques. Consequently,
they failed to minimize the positive noise at the points indicated
by the arrows in Fig. 4(a) and (d). The AG and DL filters recon-
structed the similar temporal profiles, but were strongly affected
by both the spikes and drops of the local fluctuations that were
generated by the modeled profiles and noise. These two function
fitting techniques tended to underestimate the corrected values
noticeably at the points around the points containing the negative
noise. The other three techniques (the 4253HT, MVI, and ARM3-5
filters) excessively altered the shape and amplitude of the profiles,
leading to smoother and flatter reconstructed profiles, as apparent
in the profiles for the VW (Fig. 4(b)) and CNF (Fig. 4(d)). Among the
Table 3
RMSE between the reconstructed profiles by the seven techniques, and the original profile

Cluster type RMSE

Noise-added RMM EH SG AG DL

L/R 0.06 0.02 0.03 0.04 0.04
VW 0.14 0.06 0.06 0.11 0.11
RP1 0.08 0.02 0.03 0.05 0.04
CNF 0.09 0.04 0.03 0.05 0.05

Mean 0.09 0.04 0.04 0.06 0.06
three techniques, the reconstructed profiles by the 4253HT filter
were closer approximations to the modeled profiles than those
by the MVI and ARM3-5 filters.

4.2.2. Calculation and comparison of RMSE and candidate measures
The RMSE between the reconstructed profiles from the seven

techniques and the original profiles for the four representative land
cover classes are summarized in Table 3. All seven techniques
achieved smaller RMSEs than the input noise-added profiles, indi-
cating their noise reduction effects. Noise was most remarkably re-
duced in VW by the RMMEH and SG filters (from 0.14 to 0.06), and
least noticeably reduced in L/R by the AG and DL filters (from 0.06
to 0.04). The RMMEH and SG filters generally performed best
(mean value = 0.04) for the modeled profiles of defined clusters,
and the AG and DL filters performed the poorest (mean va-
lue = 0.06). The 4253HT, MVI, and ARM3-5 filters showed their
moderate performance in noise reduction.

The correlation coefficients (R2) between the RMSE and the four
candidate measures substituted for the RMSE are also provided in
Table 3. Because of limited space, the tables for each value of the
four measures were omitted. Do was moderately correlated with
the RMSE in RP1 (R2 = 0.58), but R2 remained low in the other clus-
ter types. The highest R2 was achieved by De in VW (0.85) and NLF
(0.52), and by Dg in L/R (0.60) and RP (0.89). De, Da, and Dg, obtained
the moderate correlation in L/R and CNF (except for Da in CNF), and
the relatively high correlation in VW and RP1. Consequently, De

and Dg reached a similar high mean R2 with RMSE (0.69 and
0.70, respectively). Although the difference in the mean R2 was
very small, this study selected Dg as the most appropriate measure
of noise reduction effects when the ‘true’ profiles were not
available.

4.3. Evaluation of noise reduction effects by seven noise reduction
techniques

4.3.1. Visual comparison of noise reduction effects
Fig. 5 shows the reconstructed NDVI temporal profiles using the

seven noise reduction techniques in the most representative pixels
for the 12 clusters. Because of limited space, only the raw and
reconstructed profiles during the period between 2005 and 2007
were displayed in each figure. All seven noise reduction techniques
could eliminate the anomalously high and low NDVI values in the
original NDVI time-series and smooth the temporal profiles. The
reconstructed profiles shared the common characteristics of the
seasonal trends with those in previous studies such as Chen et al.
(2004); Ma and Veroustraete (2006), and Julien and Sobrino
(2010). In our visual inspection, our reconstructed profiles for
RP1, RP2, RP3, CNF, and DNF had similar phenological features,
such as the dates for the season start and end of growing, maxi-
mum NDVI and its timing, and average and integrated NDVI, with
those in Chen et al. (2004). The reconstructed temporal profiles for
UR/S, SU/R, COT, RP1, RP2, RP3, OSR, CNF, and DNF showed distinc-
tive cyclic trends with different cycles and NDVI amplitudes. The
reconstruction for UR/S clearly presented the phenological trend
s.

R2 with RMSE

4253 HT MVI ARM 3–5 Do De Da Dg

0.03 0.03 0.03 0.10 0.59 0.50 0.60
0.08 0.10 0.08 0.28 0.85 0.75 0.83
0.03 0.04 0.05 0.58 0.81 0.63 0.89
0.04 0.04 0.04 0.03 0.52 0.19 0.48

0.05 0.05 0.05 0.25 0.69 0.52 0.70
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Fig. 4. Modeled, noise-added, and reconstructed NDVI temporal profiles for representative land cover types.
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of urban vegetation. The cyclic trend with the two high peaks in
the reconstructed profiles for COT (except for the AG and DL filter)
resulted from the cultivation of cotton and its regrowth after the
harvest. The reconstructed temporal profiles for L/R, MSL, and
VW demonstrated the irregular trends influenced by the increase
and decrease in the lake water levels. In particular, a dramatic de-
crease was seen in the reconstructed profile for VW because the
vegetated wetland was submerged under water every year.

Although the reconstructed NDVI temporal profiles were
smoother than the original profiles, the seven techniques had dif-
ferent effects on noise reduction. The RMMEH filter was very sen-
sitive to the high positive outliers at the single points, such as
those indicated with the black arrows in Fig. 5(c) and (g), and
resulted in higher reconstructed values than the other six tech-
niques. The reconstructed profiles using the SG filter had similar
temporal trends to those using the RMMEH filter. These two tech-
niques reconstructed the raw profiles in a different manner from
the other five techniques at the small one-point spikes around the
curve peaks, such as the points indicated by the white arrows in
Fig. 5. The RMMEH and SG filters handled these outliers as the
values approximate to the true values, while the other five filters
dealt them as the values with strong positive noise. As a result,
different maximum NDVI values and their timings could be de-
rived between these two and other filters. The AG and DL filters
showed their sensitivity to the high negative outliers, as seen in
Fig. 5(d), (j), and (l), resulting in the production of different pro-
files from those using other techniques, suggesting their modeling
was under-fit and over-fit. The MVI and ARM-3-5 filters gener-
ated similar temporal profiles which were flatter than the other
techniques for the raw profiles with the acute high peaks and
deep troughs, such as those in Fig. 5(d), (g), and (h). The corrected
profiles using these filters had similar trends to those using the
4253HT filter, although the values using the former two filters
were higher at the troughs and lower at the peaks than those
using the latter filter.
4.3.2. Evaluation of noise reduction effects based on the new measure
Table 4 presents the evaluation results of the noise reduction ef-

fects for the seven techniques using the raw NDVI temporal pro-
files of twelve cluster types based on Dg(nr,c). The variation of
Dg(nr,c) for the seven noise reduction techniques in a cluster type
was smallest in UR/S (from 0.01 to 0.03) and largest in VW (from
0.06 to 0.11) and RP3 (from 0.02 to 0.07). The SG filter achieved
the lowest Dg(nr,c) in all twelve clusters. The RMMEH filter had
the lowest Dg(nr,c) in MSL, VW, SU/R, COT, RP1, CNF, and DNF
and second lowest Dg(nr,c) in all the other five clusters. The other
five noise reduction techniques obtained higher De(nr,c) than the
SG and RMMEH filters in all 12 clusters. Specifically, the AG filter
provided the highest Dg(nr,c) in the seven clusters, L/R, UR/S, SU/
R, COT, RP3, CNF, and DNF, and second highest Dg(nr,c) in the four
clusters, MSL, RP1, RP2, and OSR. Dg(nr,c) for the DL filter remained
up at the third highest in all twelve clusters. The 4253HT and
ARM3-5 filters obtained similar Dg(nr,c) in all the clusters. The
4253HT filter had the second or third highest Dg(nr,c) in the eight
clusters MSL, UR/S, SU/R, COT, RP1, RP2, RP3, and OSR, as did the
MVI filter in the nine clusters, L/R, UR/S, SU/R, COT, RP1, RP3,
OSR, CNF, and DNF. The Dg(nr,c) for the ARM3-5 filter was the
smallest in UR/S, VW, RP1, RP2, RP3, OSR, and DNF.

As a consequence, the RMMEH and SG filters produced the
smallest average Dg(nr,c) among the seven noise reduction tech-
niques in this evaluation. Thus, this study concludes that the
RMMEH and SG filters achieved the highest performance in reduc-
ing the noise in time-series NDVI profiles for the seven techniques
and that they are the two most appropriate noise reduction tech-
niques in the study area.
5. Discussion

To extract the representative and comprehensive temporal
profiles, this study proposed a technical approach. The approach
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Fig. 5. (a–l) Reconstructed NDVI temporal profiles generated using the seven noise reduction methods.
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consisted of NDVI profile clustering by ISODATA, cluster merging,
labeling accuracy assessment, and selection of representative NDVI
profiles based on the average RMSE of the cluster. Through this ap-
proach, we were able to extract 120 representative temporal pro-
files (12 clusters, 10 profiles per cluster). Although the selection
of the optimal number of clusters based on the J–M distance in this
approach was time-consuming, this unique approach could be con-
sidered to be the third approach for the selection of temporal pro-
files in the evaluation of noise reduction effects, in addition to the
manual approach (Bradley et al., 2007) and the random sampling
approach (Chen et al., 2004).

RMSE is an absolute measure in the evaluation noise reduction
effects only when ‘true’ modeled profiles and noise-added profiles
are available (Hird and McDermid, 2009). Because realistic noise-
added profiles with different amplitudes and frequencies for
positive and negative noise are difficult to generate, it is practical
to evaluate the effects of noise reduction using observed and
reconstructed profiles. However, the RMSE is a relative measure
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when observed and reconstructed profiles are used for perfor-
mance evaluation of noise reduction techniques, because of the
lack of ‘true’ profiles. Thus, we developed a new measure for
noise reduction effects using observed and reconstructed NDVI
profiles when ‘true’ profiles are unavailable. Dg(nr,c) is calculated
on the basis of both the distance from the resulting NDVI tempo-
ral profiles, and the distance from the upper envelope profiles, to
the noise-added profiles (Julien and Sobrino, 2010). Considering
the negatively-biased noise distribution in NDVI profiles, Dg(nr,c)
is more appropriate for the evaluation of noise reduction effects
when there is no ‘true’ profile, than for the RMSE, which can
account for the distance between the original and noise-added
profiles.

Our investigation of the noise reduction effects using Dg(nr,c)
revealed that the RMMEH and SG filters, which achieved the
Table 4
Dg(nr,c) for the evaluation of the noise reduction effects by the seven noise reduction tech
smallest among the seven techniques.

Cluster # Cluster type Filter type

RMMEH SG

1 L/R 0.03 0.02
2 MSL 0.03 0.03
3 UR/S 0.02 0.01
4 VW 0.06 0.06
5 SU/R 0.02 0.02
6 COT 0.02 0.02
7 RP 1 0.03 0.03
8 RP 2 0.04 0.03
9 RP 3 0.04 0.02
10 OSR 0.03 0.02
11 CNF 0.02 0.02
12 DNF 0.02 0.02

Mean 0.03 0.03
highest performance for the seven techniques, were the two most
appropriate techniques in the study area. The RMMEH and SG
filters could reduce the negative noise more correctly than other
techniques, because they were designed to preserve the upper
envelopes of the profiles. However, their designs resulted in high
sensitivity to the positive noise that led to the poor noise reduc-
tion effects for the positive noise, as seen by the dips in the black
profile in Fig. 4(a) and (d). The AG and DL filters were not able to
perform as well as in other studies (Jönsson and Eklundh, 2004;
Hird and McDermid, 2009). This is particularly because the
positive and negative noise added to the modeled profiles was
generated with different amplitudes and frequencies. Because of
this biased noise distribution in the noise-added profiles, the AG
filter could not deal with the non-Gaussian noise and the DL filter
failed to accurately detect the inflection points of the profiles. The
niques in using the temporal NDVI profiles of the twelve clusters. Bold numbers are

AG DL 4253HT MVI ARM3-5

0.06 0.06 0.05 0.04 0.05
0.06 0.07 0.05 0.06 0.06
0.03 0.03 0.03 0.03 0.03
0.08 0.10 0.09 0.09 0.11
0.05 0.05 0.04 0.04 0.04
0.05 0.04 0.04 0.04 0.04
0.05 0.05 0.05 0.05 0.06
0.06 0.06 0.06 0.07 0.07
0.07 0.07 0.06 0.06 0.07
0.05 0.05 0.05 0.05 0.06
0.05 0.05 0.04 0.03 0.04
0.05 0.05 0.04 0.03 0.05

0.06 0.06 0.05 0.05 0.06
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4253HT, MVI and ARM3-5 filters, that could not preserve the
upper envelopes and maintain the original trends of the profiles
in the running medians, also resulted in the poor noise reduction
performance.

6. Conclusions

Noise reduction for the NDVI time-series is an essential process
in the ecological applications such as phonology in croplands, ur-
ban, wetland, and nature lands, because these applications can
be linked to the ongoing global issues including climate change,
food security and health problems. This study performed empirical
comparisons of the seven noise reduction techniques for the NDVI
time-series based on a new measure for the situation when ‘true’
profiles were not available. The proposed approach to accurately
extract representative NDVI temporal profiles, for all land cover
types of clustered profiles, selected optimal number of clusters,
merged and labeled them, and selected the representative NDVI
profiles with high separability and labeling accuracy. We devel-
oped the geometric average of the mean average distance between
the reconstructed profile and the raw profiles, and the mean aver-
age distance between the reconstructed profile and the upper
envelope (Dg(nr,c)) as an appropriate measure for the evaluation
of noise reduction effects using observed and reconstructed pro-
files. Our comparison of the seven noise reduction techniques for
NDVI temporal profiles based on Dg(nr,c) revealed that the
RMMEH and iterative Savitzky–Golay filters were the two most
appropriate noise reduction techniques for the NDVI temporal pro-
files of the study area.

We strongly believe that the evaluation of noise reduction ef-
fects is necessary when selecting the appropriate noise reduction
techniques before conducting each application study. This is be-
cause the effects of noise reduction vary for different land cover
types and study areas, as suggested by the fact that the previous
comparison studies showed inconsistent results (Dijk et al., 1987;
Jönsson and Eklundh, 2004; Hird and McDermid, 2009). The frame-
work for the evaluation of noise reduction effects using the
proposed approach for the accurate extraction of representative
NDVI temporal profiles and (Dg(nr,c)) in this study is robust and
applicable in the evaluation of noise reduction effects with differ-
ent techniques and in other study areas. Thus, this study could
serve as a guide for researchers who needed to reconstruct the
NDVI temporal profiles. The framework will be applicable to the
assessment of noise reduction effects in the future using newly
developed techniques in future.

Future tasks to improve the framework in this study include the
development of faster processing to select the optimal number of
clusters in ISODATA clustering and to label the cluster names.
The development of a technique to generate more realistic noise
that can be added to the modeled noise is also a future area of
research.
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