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The leaf area index (LAI) is one of themost critical structural parameters of the vegetation canopy in regional and
global biogeochemical, ecological, and meteorological applications. Data gaps and spatial and temporal inconsis-
tencies exist inmost of the existing global LAI products derived from single-satellite data because of their limited
information content. Furthermore, the accuracy of current LAI productsmay notmeet the requirements of certain
applications. Therefore, LAI retrieval from multiple satellite data is becoming popular. An existing LAI inversion
scheme using the ensemble Kalman filter (EnKF) technique is further extended in this study to integrate tempo-
ral, spectral, and angular information from Moderate Resolution Imaging Spectroradiometer (MODIS), SPOT/
VEGETATION, and Multi-angle Imaging Spectroradiometer (MISR) data. The recursive update of LAI climatology
with the retrieved LAI and the coupling of a canopy radiative-transfermodel and a dynamic process model using
the EnKF technique can fill in missing data and produce a consistent accurate time-series LAI product. During
each iteration, we defined a 5 ∗ 1 sliding window and compared the RMSEs in the selectedwindow to determine
the minimum. Validation results at six sites demonstrate that the combination of temporal information from
multiple sensors, spectral information provided by red and near-infrared (NIR) bands, and angular information
fromMISR bidirectional reflectance factor (BRF) data can provide amore accurate estimate of LAI than previously
available.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The booming development of land-surface ecosystems modeling
and environmentalmonitoring techniques has resulted in an urgent de-
mand for high-quality, long-term consistent biophysical parameters.
Leaf area index (LAI), defined as one half of the total leaf surface area
per unit horizontal ground surface area (Chen & Black, 1992) , measures
the amount of leaf material in an ecosystem, which imposes important
controls on photosynthesis, respiration, rain interception, and other
processes (GTOS, 2007). Consequently, LAI is a key variable that couples
vegetation to the modeling of ecosystem productivity (Running et al.,
1999; Zhang, Anderson, Tan, Huang, & Myneni, 2005), energy, and
mass exchange between the land surface and the atmosphere (Bonan,
1995; Dickinson, 1995; Nouvellon et al., 2000; Sellers et al., 1997).
Currently, two approaches are widely used to retrieve LAI from satellite
data (Liang, 2007). The first uses empirical or semi-empirical statistical
relationships between LAI and spectral vegetation indices (Baret &
ote Sensing Science,College of
niversity, Beijing, 100875, China.
Guyot, 1991; Liang, 2004; Myneni, Hall, Sellers, & Marshak, 1995;
Wang, Huang, Tang, & Wang, 2007). Vegetation indices are designed
as a combination of surface reflectance to maximize information
about canopy characteristics and minimize interference factors from
the atmosphere and soil. The second approach is the inversion of a
radiative-transfermodel that simulates surface reflectance from canopy
structure parameters (e.g., LAI), soil, leaf optical properties, and view-
illumination geometry (Myneni, Nemani, & Running, 1997; Xiao, Liang,
Wang, Song, & Wu, 2009). Moreover, simulated lookup tables (LUTs)
(Knyazikhin, Martonchik, Myneni, Diner, & Running, 1998; Shabanov
et al., 2005) and trained neural networks (NNs) (Bacour, Baret, Béal,
Weiss, & Pavageau, 2006; Fang & Liang, 2003a; Walthalla et al., 2004)
are commonly used to simplify the process of deriving radiative-transfer
models and to improve the efficiency of inversion.

Several LAI products have been derived from various sets of satellite
observation data using the above three approaches over regional to
global domains. NOAA/AVHRR is the early moderate resolution sensor
used to produce global LAI values at 0.25° spatial sampling and amonth-
ly time cycle (Buermann, Dong, Zeng, Myneni, & Dickinson, 2001; Los
et al., 2000; Myneni et al., 1997; Sellers et al., 1996) and ECOCLIMAP
LAI (Masson, Champeaux, Chauvin, Meriguer, & Lacaze, 2003) at
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1/120° spatial sampling and the same time cycle as AVHRR LAI.CYCLOPES
(Baret et al., 2007). GLOBCARBON (Deng, Chen, Plummer, Chen, & Pisek,
2006) and a CCRS regional product (Fernandes, Butson, Leblanc, &
Latifovic, 2003) have been derived from SPOT/VEGETATION since 1998.
Their spatial resolutions are 1/112°, 1/11.2°, and 1 km respectively; the
temporal resolution of CYCLOPES and CCRS is 10 days, while that of
GLOBCARBON is one month. A widely used eight-day synthesized LAI
product has been generated from Terra-Aqua/MODIS at 1 km spatial res-
olution since 2000 (Knyazikhin et al., 1998; Yang et al., 2006). The Langley
Atmospheric Sciences Data Center (ASDC) has been routinely processing
a LAI product from MISR data since October 2002 (Diner et al., 1999).
Recently, a Global Land Surface Satellite (GLASS) LAI product with
5/1 km spatial resolution and an eight-day temporal sampling period
was generated from time-series AVHRR/MODIS reflectance data using
general regression neural networks (Xiao et al., 2013). Other global LAI
data sets produced from ADEOS/POLDER (Roujean & Lacaze, 2002),
ENVISAT/MERIS (Bacour et al., 2006), and MSG/SEVIRI (García-Haro,
Coca, & Miralles, 2008) are restricted by time period or spatial coverage.

Validation campaigns aimed at improving the understanding of
these satellite LAI products for users and developers are ongoing. Cur-
rent research has revealed that the uncertainties of typical LAI products
such as MODIS, CYCLOPES (Fang, Wei, & Liang, 2012), MISR (Hu et al.,
2007), GLOBCARBON, and ECOCLIMAP (Garrigues, Lacaze, et al., 2008)
are still unable to meet the target accuracy of ±0.5 according to the
Global Climate Observation System (GCOS) requirement (GCOS,
2006). Furthermore, LAI data gaps and inconsistencies existing in
these products may also restrict their application (Wang, 2012; Xiao,
2012).

Most of the LAI products mentioned above are generated from
single-satellite observation data; the limited amount of information in
the retrieval process accounts for the appearance of data gaps and
inconsistencies, especially under poor observation conditions. Several
attempts have been made to improve the quality of LAI data. One way
is to develop complex algorithms based on physical principles and inte-
grating various sources of prior information. Combal et al. (2002) used
prior information to solve the ill-posed inverse problem of canopy bio-
physical variable retrieval. Koetz, Baret, Poilvé, and Hill (2005) used
coupled canopy structure dynamic and radiative-transfer models to
estimate biophysical canopy characteristics. Another approach is to in-
tegrate remotely sensed information from multiple satellite data sets
into the retrieval process. Gonsamo and Chen (2014) incorporated
background, topography, and foliage clumping information to improve
theUniversity of Toronto (UofT) LAI algorithm. Ganguly et al. (2008) de-
veloped a multi-sensor retrieval algorithm to derive LAI and FAPAR
products from the Advanced Very High Resolution Radiometer
(AVHRR), which demonstrated the effectiveness of more measured
information (spectral and/or angular variation). Gray and Song (2012)
developed a novel approach for mapping effective LAI using spectral
information from Landsat, spatial information from IKONOS, and
temporal information from MODIS.

Xiao, Liang,Wang, and Jiang (2011) developed coupled dynamic and
radiative-transfer models to estimate real-time LAI from MODIS time-
series data. This approach is able to fill in gaps and to provide better
accuracy. However, it is based on MODIS data alone. In this study, this
method has been further extended to integrate multiple satellite data
with various sets of temporal, spectral, and angular information to
improve accuracy, fill in gaps, and eliminate inconsistencies. Moreover,
the practice of using the retrieved LAI as prior information to update the
dynamic model was demonstrated to be beneficial to the further
development of inversion. The following sections present the detailed
methodology, validation results, discussion, and conclusions.

2. Methodology

The basic procedure of the extended method is briefly illustrated in
Fig. 1. The combination of time-series MODIS, CYCLOPES, and MISR LAI
data can minimize gaps and produce better LAI climatology because of
the different observation cycles of multiple sensors. The LAI climatology
works in the background using the assimilation method and the initial
values to construct the dynamic model. High-quality, cloud-free land-
surface reflectance data extracted from MODIS, SPOT/VEGETATION,
and MISR are used to update the predictions of the dynamic model
recursively with the help of the EnKF technique and the radiative-
transfer model. The updated LAI is then used to improve the predictions
of the dynamic model.

In the extended approach, an iterative method is proposed to im-
prove retrieval accuracy. Retrieved LAI values are used to substitute
for LAI climatology to provide better estimates for the dynamic model
and the radiative-transfer model. The root mean square error (RMSE)
between the retrieved LAI values and LAI climatology is used tomeasure
the improvement in the retrieval process and determine exit criteria for
the iterations. A decreasing RMSEwith further iterationsmeans that the
LAI climatology is approaching the retrieved LAI values. In other words,
the performance of the iterative procedure is declining, and therefore
the procedure is terminated. In addition, this research has developed
three progressive tests to assess the performance of temporal, spectral,
and angular information in the retrieval process and to find out the best
way to combine them. Data sets (including field measurements and
remote sensing data) and critical components of this method are
described in detail below.

2.1. Field measurement of LAI

Various validation studies have involved taking detailed field mea-
surements of LAI using direct methods (e.g., destructive sampling) and
indirectmethods (e.g., LAI-2000, AccuPAR,Digital Hemispherical Photo-
graphs, etc.) (Garrigues, Shabanov, et al., 2008; Jonckheere et al., 2004;
Weiss, Baret, Smith, Jonckheere, & Coppin, 2004). In the present study,
LAImeasurements for six siteswere selected fromexisting research net-
works, including FluxNet (WWW1), AmeriFlux (WWW2), Bigfoot
(Cohen & Justice, 1999), and VALERI (WWW3) (Baret et al., 2005),
based on the principles of enough observations during the survey
period and typical land-surface biomes. The biomes of the selected val-
idation sites can be categorized into cropland, grassland, and forest.
Basic information on the validation sites is listed in Table 1.

The Bondville site is an agricultural site in the Midwestern United
States near Champaign, Illinois. The field was continuous no-till with
alternating years of soybean and maize crops (Kuusk, 2001). The
Rosemount-G19 AmeriFlux site is located within an exclusively agricul-
tural landscape, and the type of agriculture is commonamong the upper
Midwestern states of the United States. TheMead Irrigated site is locat-
ed in Nebraska, United States, and the biome of this validation site is
maize. Hainich contains the largest coherent area of deciduous trees
in Germany. The dominant trees are beech, mixed with ash, maple,
tilia cordata, hornbeam, and chequer tree. The Dahra North and
Tessekre North sites are located close together in Africa and are both
covered with sparse grass savanna. The field LAI measurements for
these two sites were relatively lower than the others listed in Table 1
and were used to test the applicability of the proposed method,
especially under conditions where background noise is obvious and
the vegetation distribution is sparse.

Themeasurementmethod for the above validation siteswas indirect
except for Mead Irrigated and Bondville. The result of destructive sam-
pling is true LAI, while the results of indirect methods (e.g., LAI-2000
and AccuPAR) are known as effective LAI because of the assumption of
uniformly distributed leaves and ignorance of foliage clumping. To elim-
inate the effect of foliage clumping due to the indirect measurement
methods described above, effective LAImeasurementsmust be convert-
ed to true LAI. VALERI (WWW3) provides numerous measurements of
effective LAI and the corresponding true LAI, enabling linear regression
models based on specific biomes (e.g., cropland, grassland, and forest)
to be built to perform conversion from effective LAI to true LAI



Fig. 1. Flowchart of an LAI inversion method using multiple sensors.

27Q. Liu et al. / Remote Sensing of Environment 145 (2014) 25–37
(Fig. 2). The linear regression model is highly reasonable, with
R-squared no less than 0.92 and P-values less than 0.001.
2.2. Remote sensing data sets

To apply this extended method to the global scale in the next stage,
we decided to choose LAI products with sufficient time period and spa-
tial coverage. Hence, CCRS and other products from ADEOS/POLDER or
MSG/SEVIRI were excluded from this research. Compared with the rel-
atively higher spatial resolution of MODIS LAI (1 km) and CYCLOPES
LAI (1/112°, approximately 1 km at the Equator in a plate-carrée projec-
tion), the GLOBCARBON LAI is coarse, with a pixel size of 1/11.2°
(approximately 10 km at the Equator in a plate-carrée projection).
Moreover, its temporal resolution (one month) is less than those of
MODIS LAI (8 days) and CYCLOPES LAI (10 days). TheMISR LAI product
shows better structural variability (Hu et al., 2007) than othermeasures
due to the specific observational approach used. Therefore, the inclusion
of MISR data also provides the capability to improve the accuracy of
surface characterization. Taking all these factors into consideration, we
eventually used MODIS, MISR, and CYCLOPES LAI and their correspond-
ing surface reflectance products in the proposedmethod. Table 2 shows
Table 1
Basic information on the validation sites.

Site name Latitude (°) Longitude (°) Me

Bondville 40.0061 −88.292 De
Rosemount-G19 44.7217 −93.089 Acc
Mead Irrigated 41.1651 −96.477 De
Hainich 51.0793 10.452 LAI
Dahra North 15.3675 −15.443 LAI
Tessekre North 15.896 −15.061 LAI
the characteristics of the selected LAI products and their corresponding
land-surface reflectance products used in this study.

MODIS, SPOT/VEGETATION, and MISR surface reflectance data are
routinely used to generate global LAI products. The MODIS LAI product,
available through NASA's Warehouse Inventory Search Tool (WIST)
interface (WWW4), is derived from a main (QC b 64) and a backup
(64 ≤ QC b 128) algorithm according to an ancillary quality-control
(QC) layer. The CYCLOPES LAI (V3.1) has been generated from SPOT/
VEGETATION at a resolution of 1/112° every 10 days from 1999 to
2007. This measure can be downloaded from the POSTEL Land Surface
Thematic Centre (WWW5). The status map (SM) layer is used to indi-
cate data quality; SM = 0 indicates the best retrieval, while SM N0
means that the retrieval is suboptimal due to potential aerosol, cloud,
or snow contamination. The MISR LAI (WWW6) used in this paper is a
Level 3 component global land-surface (CGLS) product which is sum-
marized from the best LAI estimation of Level 2 land-surface data on
the basis of an ancillary quality-assessment (QA) flag, meaning that it
can be regarded as the finest level of LAI data.

Before integrating MODIS, SPOT/VEGETATION, and MISR data, it is
necessary to minimize the influence of different spatial resolutions
and projections. To match different observations geometrically, we
used the General Cartographic Transformation Package software
asurement method Biome type Year(s)

structive sampling Croplands 2004, 2005, and 2006
uPAR Corn 2003
structive sampling Maize 2002
-2000 Mixed forest 2001
-2000 Grass savanna 2002
-2000 Grass savanna 2002



Fig. 2. Scatter plots of effective LAI and true LAI over three typical biomes.
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(GCTP, WWW7) to transform SPOT/VEGETATION and MISR data (in-
cluding LAI and their corresponding surface reflectance) to the MODIS
projection system and to resample them with a spatial resolution of
1 km.

2.3. Construction of LAI climatology

LAI climatology is calculated as a time-smoothed mean value of the
best-estimate LAI values; during the years of the observation period,
poor-quality LAI values are replaced by average values. In the present
research, LAI climatology served to construct the dynamic process
model and to simulate reflectance under given conditions through a
radiative-transfer model. This section presents the proposed process
to construct LAI climatology from multiple sensors.

2.3.1. Pre-processing of LAI products from multiple sensors
The pre-processing of LAI products was based on matched LAI data

from MODIS, CYCLOPES, and MISR (i.e., the same projection (ISIN) and
same spatial resolution (1 km)). Thus, differences in spatial resolution
were eliminated, and in addition the different temporal resolutions en-
abled us to enhance the time-series LAI. Finally, the quality-control flag,
foliage clumping index, and filter method were applied. The result of
pre-processing was a smoothed time-series LAI which combined infor-
mation from MODIS, CYCLOPES, and MISR. The smoothed time-series
LAI was used in the LAI climatology.

During pre-processing, a quality-control flag and a clumping index
were used respectively to eliminate uncertainties due to unstable obser-
vations (Fernandes et al., 2003; Rodell et al., 2004; Shabanov et al.,
2005) and the effect of foliage clumping (i.e., to convert effective LAI
to true LAI) (Chen & Black, 1992; Jonckheere et al., 2004; Weiss, Baret,
Garrigues, & Lacaze, 2007;Weiss et al., 2004). LAI productswere catego-
rized into high-quality LAIs (QC b 64 for MODIS LAI and SM = 0 for
CYCLOPES LAI) and poor-quality LAIs (others). The MISR LAI used in
this paper can be considered as of high-quality because it is summarized
from the best LAI estimation of Level 2 land-surface data on the basis of
Table 2
Characteristics of LAI products and land-surface reflectance products.

Product Satellite/sensor Spatial resolu

MODIS LAI (MOD15) Terra-Aqua/MODIS 1 km/global
CYCLOPES LAI SPOT/VEGETATION 1/112°(~10 k
MISR L3 CGLS LAI Terra/MISR 0.5°/global
MODIS SREF (MOD09) Terra-Aqua /MODIS 500 m/global
SPOT S10REF SPOT/VEGETATION 1/112°(~10 k
MISR L2 BRF Terra/MISR 1.1 km/global

MISR L3 CGLS: MISR Level 3 component global land-surface product; LAI is one of its statistical
REF: SPOT 10-day synthesized reflectance product. MISR L2BRF: MISR Level 2 bidirectional refl
an ancillary quality-assessment (QA) flag. Only high-quality LAI values
were retained in the retrieved data. The gaps due to poor-quality LAIs
were filled by multi-year averages. Due to the potential misrepresenta-
tion of LAI estimates, the quality-control flag was not always sufficient
to restrict the analysis to high-quality LAIs (Gray & Song, 2012). This
problem was addressed using Savitzky–Golay (SG) filtering to remove
outliers, as will be discussed latter. Based on the extent of agreement
with the assumption of a random leaf distribution over the canopy ar-
chitecture, the three LAI products discussed can be categorized into
true LAI (MODIS, MISR) and effective LAI (CYCLOPES). Therefore, a
clumping index had to be used to convert the effective CYCLOPES LAI
to true LAI values. The conversion equation is:

tLAI ¼ eLAI
Ω

ð1Þ

where tLAI is the true LAI which takes foliage clumping into consider-
ation, eLAI is effective LAI, and Ω is the clumping index.

Several practices have been implemented to derive global clumping
indices from satellite products. Chen, Menges, and Leblanc (2005)
mapped global foliage clumping using multi-angular POLDER1 (Polari-
zation and Directionality of Earth Reflectance) data based on the Nor-
malized Difference between Hotspot and Darkspot (NDHD). Pisek,
Chen, Lacaze, Sonnentag, andAlikas (2010) extended this by integrating
complete year-round observations from POLDER3 to overcome the lim-
ited number of observations from POLDER1. Pisek, Chen, and Nilson
(2011) derived a clumping index from MODIS bidirectional reflectance
distribution function model parameter products. Note that because the
CYCLOPES LAI product corresponds to certain effective LAI products
where clumping is observed only at the landscape level, it is reasonable
to apply the clumping index to CYCLOPES LAI according to the specific
biome type provided by MODIS Land Cover Products (MOD12). This
research has used the accessible global clumping index derived from
POLDER3, with a projection (SIN) analogous to MODIS (ISIN). Then
the mean values of specific biomes were counted, and these statistical
values were used in the proposed method. After the conversion of the
tion/coverage Temporal resolution/span Projection

8 days/2000– ISIN
m)/global 10 days/1999–2007 Plate-carrée

1 month/2000– GCTP_GEO
8 days/2000– ISIN

m)/global 10 days/1998– Plate-carrée
1 day/2000– SOM

summary variables. MODIS SREF: MODIS surface reflectance product (MOD09). SPOT S10
ectance factor product.

image of Fig.�2
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CYCLOPES LAI, the three LAI products used could be regarded as true
LAIs related to the same biome.

Subsequently, the high-quality true LAI data were used to construct
an LAI climatology in which the excluded LAIs due to poor values of the
quality flag were replaced by multi-year averages. Furthermore, the
Savitzky–Golay (SG) filtering (Chen et al., 2004; Savitzky & Golay,
1964) was applied to capture and eliminate the subtle and rapid chang-
es in the time series based on the assumption that LAI climatology fol-
lows annual cycles of growth and decline of vegetation. This is one of
the most popular ways to analyze time-series data and has been suc-
cessfully used to derive a smooth vegetation index (VI) from Advanced
Very High Resolution Radiometer (AVHRR) data (Jonsson & Eklundh,
2002) and from temporally and spatially continuousMODIS LAI time se-
ries (Gao et al., 2008). After the application of SG filter, the outliers due
to potential miscalculation of the quality flag were further reduced.

2.3.2. Improvement of LAI climatology
After pre-processing of LAI values from multiple satellite sensors,

uncertainties due to unstable observations and foliage clumping were
eliminated asmuchas possible. In the present research, the introduction
of temporal information from three satellite sensorswas able to provide
higher-quality LAI values to construct LAI climatology and to narrow the
interval between neighboring satellite observations.

Then this time-smoothed LAI was used to construct a dynamic
model and to simulate reflectance at the given view-illumination geom-
etry. The exact construction of the LAI climatologywas one of the critical
factors that contributed to retrieval accuracy. Therefore, an iteration ap-
proach was proposed to provide a better estimate of LAI climatology.
The inversion result was regarded as an approximation from LAI clima-
tology to the actual LAI, and therefore it was used to update the LAI
climatology. In this way, the LAI climatology calculated from the time-
smoothed mean value was improved. The root mean square error
(RMSE) was used to assess performance, and as stated in Section 3,
the trend of variation in RMSE was evaluated over several typical bi-
omes in detail and demonstrated the effectiveness of this improvement.

2.4. Dynamic model based on LAI climatology

A reasonable LAI climatology can be obtained usingmulti-year aver-
aging and SG filtering. However, there still exist some differences
between LAI climatology and real LAI values, especially under distur-
bance conditions (e.g., poor atmospheric conditions). It is necessary to
update the LAIwhen reflectance observations are available. The integra-
tion of multi-source satellite data is far more significant because of the
increased number of observations and the decreased time interval
between neighboring observations. In the present research, a simple
dynamic model (Xiao et al., 2009, 2011) was used:

LAIt ¼ Ft � LAIt−1 ð2Þ

where LAIt − 1means LAI at the previous time step and LAItmeans LAI at
the current time step. Ft is a linear operator representing the relation-
ship between neighboring LAI observations and can be calculated as
follows:

Ft ¼ 1þ 1
jLAIclimt j þ ε

� dLAIclimt

dt
ð3Þ

where LAIclimt is the value of LAI climatology at time step t. dLAIclimt
dt is the

first-order derivative of LAI climatology and stands for the variation ten-
dency of LAI climatology at time step t. ε is set to 10−3 to avoid an inva-
lid denominator.
2.5. Canopy radiative-transfer model

Canopy radiative-transfer models describe the relationship between
canopy characteristics and reflectance. Many models have been devel-
oped to simulate canopy reflectance and to retrieve land-surface bio-
physical parameters from satellite observations (Kuusk, 1995a, 2009;
Liang, 2004; Liang & Strahler, 1993). A two-layer canopy-reflectance
model (ACRM) developed by the vegetation remote sensing group at
Tartu Observatory was adopted as an inversion method in the present
research. Compared with the existing multispectral CR model (MSRM)
(Kuusk, 1994) and the Markov chain CR model (MCRM) (Kuusk,
1995b), the ACRM model accounts for non-Lambertian soil reflectance,
the specular reflection of direct sun rays on leaves, the hotspot effect,
and a two-parameter leaf-angle distribution (Kuusk, 2001). This inver-
sion method has been widely used to estimate LAI and other biological
variables from remotely sensed data and has shown excellent results
(Fang & Liang, 2003a; Fang, Liang, & Kuusk, 2003; Xiao et al., 2011).

In the present study, the dynamic model construction procedure
discussed earlier was used to take advantage of temporal information
from the three mentioned global LAI products. The ACRM model was
run to simulate reflectance at fixed wavelengths with the predicted
LAI from a dynamic model and the given view-illumination geometry
of satellite observations. The simulated reflectance data were then
used to update the predicted LAI from the dynamic model using the en-
semble Kalman filter (EnKF) technique presented in the next section.
The spectral information (provided by the MODIS, SPOT/VEGETATION,
and MISR surface reflectance products) and the angular information
(provided by the MISR surface reflectance product) were used in the
course of the EnKF technique. A detailed discussion of this information
is presented in the analysis section (Section 3).

2.6. Ensemble Kalman filter

The ensemble Kalman filter is a critical sequential data-assimilation
method originally proposed by Evensen (2003, 2009). It has been prov-
en capable of efficiently handling strongly nonlinear dynamics and large
state spaces and has gained in popularity because of its simple concep-
tual formulation and relative ease of implementation (Evensen, 1994).
Here, we state the standard EnKF analytical equation expressed in
terms of the ensemble covariance matrices and explain the major vari-
ables only. A detailed implementation of the EnKFmethod is available in
the published literature of Evensen (2009):

Aa ¼ Aþ A′A′THT HA′A′THT þ γγT
� �−1

D′ ð4Þ

where A∈ℜn × N is defined as thematrix holding N ensemble members
of n-dimensional model state vectors (i.e., four control variables and re-
flectance); A′ is defined as the ensemble perturbationmatrix; γ∈ℜm × N

is the ensemble of perturbations and its ensemble mean, equal to
zero; D′ ∈ℜn × N is the ensemble of innovation vectors; and H ∈ ℜm × n

is a linear observation operator that transforms between the augmented
state vector and the observations. A′A′THT(HA′A′THT + γγT)−1 is the so-
called Kalman gain matrix and determines to what extent the model
prediction is projected onto themeasurements. The superscript “a” stands
for “analysis” and denotes the analyzed state-vector ensemble; the super-
script “T” stands for a matrix transpose.

In the present research, four free parameters (LAI, the Markov pa-
rameter, and the weights of the first and second price functions) of
ACRM, and the reflectance at several wavelengths were the elements
of the ensemble members (i.e., the model state vector). In the EnKF
technique, the statistical characteristics (e.g., mean value and variance)
of the ensemble members can be used to represent those of the popula-
tion in EnKF. The integration of high-quality time-series reflectance data
and simulated reflectance values from ACRM were used to update the
ensemble members (e.g., LAI). Note that in this research, the solution



Fig. 3. Variation of RMSE (line marked with rectangles) with number of iterations.
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to the ensemble members may be non-unique, despite the large quan-
tity of surface reflectance data. In this case, the mean value of specific
non-unique values was regarded as a reasonable solution to its corre-
sponding parameters. Then the mean LAI value was used to update
the LAI climatology.

2.7. The iteration process of LAI climatology

As described in Section 2.3.2, the iterative process involved using the
retrieved results to update the LAI climatology to providemore accurate
Fig. 4. Variation in RMSE and retrieved LAI with
time-series LAI values for the dynamic model and the canopy radiative-
transfer model. A key task in evaluating this procedure is to discuss the
performance of the iterations and to determine explicitly its exit criteria.
In this section, RMSE is used as an indicator of retrieval performance.
The linesmarkedwith rectangles (RMSE) (Fig. 3) indicate the difference
between LAI climatology and retrieved LAI. In the proposedmethod, the
retrieved LAI can be regarded as a shift from the LAI climatology to the
real LAI (i.e., the actual time-series LAI of the specific site). The iteration
process makes it possible to update the LAI climatology with a more
accurate one; hence, when the number of iterations increases, the result
number of iterations at Rosemount-G19.
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Fig. 5. Satellite data with quality control over Bondville in 2005.
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of the retrieval seems to be a closer approximation to the real LAI. Due to
the latent limitations of satellite observations, model assumptions, and
the clumping index, the RMSE cannot generally reach zero. In thismeth-
od, a 5 ∗ 1 slidingwindow is defined to compare the RMSE of the current
iterationwith four surrounding ones (including two prior iterations and
two subsequent iterations, all these five RMSEs being in the slidingwin-
dow). If the current RMSE is the smallest, it is chosen as the minimum
RMSE, and the result of the current iteration is chosen as the improved
LAI; otherwise, the slidingwindow ismoved to thenext iteration to cap-
ture another five RMSEs.

To test the performance of these criteria, 20 iterations were carried
out at each validation site to observe the trend of the RMSE curve. Obvi-
ously, RMSE curves for all these sites reached a relatively low value
(approximately 0.1), and the minimum RMSE was easy to find in the
first 10 iterations using the sliding window. Additional iterations may
lead to two situations: (1) the fluctuations are not significant, which
means that the extra iterationswill not makemuch difference in the re-
sults; or (2) there is a substantial difference between certain iterations
(e.g., Rosemount-G19) and the average RMSE values (the red dotted
line). It is clear from Fig. 4 that the retrieved LAI values for
Rosemount-G19 did not change much with number of iterations apart
from the sudden rise at the beginning of the year. Therefore, iterations
may improve retrieval accuracy; however, too many iterations do
have the potential of exaggerating certain variations in retrieved LAI
(see the unusual vertical lines at the beginning of the iterations),
which also correspond to an increase in RMSE. In conclusion, the mini-
mum RMSE approach discussed in this paper is capable of handling all
the situations occurring at the validation sites.

3. Analysis of results

3.1. Assessing temporal information

One of the advantages of integrating data from multiple sensors is
increasing the amount of temporal information available. In the present
research, temporal information is available from the additional satellite
LAI and surface reflectance data along with MODIS, SPOT/VEGETATION,
and MISR data. An important task is to assess how this temporal infor-
mation improves LAI estimates. Poor-quality or invalid LAI and surface
reflectance data resulting from unstable observation conditions were
removed on the basis of the quality-control flag during the pre-
processing procedure. Then the assessment process was implemented
in three steps. First, only MODIS data were used in LAI retrieval. Second,
SPOT/VEGETATION data were added to the inversion. When the obser-
vation times of MODIS and SPOT/VEGETATION data coincided, only the
MODIS datawere kept. This ensured thatwhennew satellite sensor data
were added, the temporal information only increased. Finally,MISRdata
were added, coincident observations were rejected, and nadir reflec-
tance was used only to avoid the interruption of angular information.
Fig. 5 shows the procedure for including satellite data, the missing
values can be inserted after quality control in terms of a single-observa-
tion system, but themultiple sensors can collectmore valid LAI to enrich
the details and achieve better agreement with field LAI measurements.
The green bars in Fig. 5 represent available high-quality surface reflec-
tance data. It is obvious thatmultiple sensors can providemore valid re-
flectance data, narrow the time intervals between neighboring satellite
observations, and enhance data frequency for the EnKF technique. Be-
cause of the limitations of available MISR BRF data and the exclusion
of coincident MISR data, the total available surface reflectance data do
not change much between Fig. 5b and c.

The next step was to compare the effect of three combinations of
temporal information, except for Bondville in 2004 because of the lack
of MISR BRF data (Fig. 6). At the Bondville site in 2005, the missing
MODIS LAI data around day 200 caused a sudden decline from day
200 in the retrievals based onMODIS data, but the results frommultiple
sensors could fill in the missing values and achieve better agreement
with fieldmeasurements. This also occurred at other sites; inversion re-
sults based onMODIS alone (i.e., the inversion results fromXiao'smeth-
od) underestimated real values to various degrees, but the inclusion of
SPOT/VEGETATION and MISR data could improve the results to a rela-
tively reasonable level. The combination of MODIS, SPOT/VEGETATION,
and MISR shows the best performance during the peak of the growing
season. However, there still exist some shortcomings, such as at the
Mead Irrigated site. The combinations of multiple sensor data do show
better performance on high values, but are not in very good agreement
at the beginning of the growing season. Tessekre North andDahraNorth
are two sites located in Africa and covered with sparse grass savanna;
the background noise is more significant than at any other sites, and
the retrieved LAI values are relatively lower, with frequent fluctuations.
However, the extended method proposed here also provided results
which are more applicable than the retrieval results based on MODIS
alone. In the proposedmethod, although the coincident LAI (surface re-
flectance) values from CYCLOPES (SPOT/VEGETATION) and MISR were
removed, this never meant that the contributions from CYCLOPES
(SPOT/VEGETATION) and MISR were insignificant. In other words, use
of the EnKF technique was based on the existence of available satellite
observations. If surface reflectance values are not available, the LAI for
the next time step will be that predicted by the dynamic model. There-
fore, the inclusion of time-series data with a narrowed time interval be-
tween neighbor observations enhanced the number of results from the
EnKF technique (which are usually much accurate than the predictions
of the dynamic model). These estimates were used in the dynamic
model to provide better prediction. As a result, the incorporationofmul-
tiple sensor products can clearly lead to better results than MODIS
alone.
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Fig. 6. Results of temporal information combinations from three sensors at six validation sites. The blue magnitude and olive lines marked as “Retrieved_MOD”, “Retrieved_MOD_VGT”,
and “Retrieved_MOD_VGT_MISR” represent the inversion results for MODIS, MODIS + VGT, and MODIS + VGT +MISR respectively. The red triangles are field measurements from the
research network.
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3.2. Assessing spectral information

In the previous description, multispectral land-surface reflectance
was used, and the results were acceptable comparedwith those derived
from a single-observation system. The assessment of spectral informa-
tion depends on the conclusion of Section 3.3; multiple satellite obser-
vations were used. However, reflectance in the blue and green bands
is easily disturbed by poor air conditions, which may sometimes intro-
duce error into the retrieval process. The canopy structure-sensitive
red band and the near-infrared band are responsive to LAI
variations. Consequently, it is an important task to assess whether
spectral information improves LAI estimates. The spectral information
mentioned above lies in various band combinations. The assessment
was conducted in two steps. First, multispectral band reflectance from
MODIS, VEGETATION, and MISR (BRF data with nadir view angle)
were used for inversion. Second, the red and near-infrared bands were
used to derive LAI.

Fig. 7 shows LAI values derived from multispectral bands and two
specific bands (the red and near-infrared bands). Rejection of the easily
disturbed blue and green bands results in better performance, especially
in the beginning of the growing season. Bondville is a perfect validation
site, and the retrievals achieve perfect agreement with field measure-
ments. LAI values derived from the red and near-infrared bands improve
the performance at the beginning and end of the growing season for the
Mead Irrigated and Rosemount-G19 sites. Hainich contains the largest
coherent area of deciduous trees in Germany. The main tree species is
beech, mixed with other trees. The variation of LAI here shows a longer
growing season than at other sites where the main biome is crops. The
results for Tessekre North and Dahra North are quite remarkable. These
two sites are located in Africa and are both covered with sparse grass sa-
vanna, and the background noise is moremarked than at other sites. The
exclusion of the blue and green bandswas able to eliminate disturbances
and led to fewer fluctuations. The comparison reveals the importance of
eliminating background noise disturbances (e.g., soil, atmosphere) and
highlights the information of vegetation. Reflectance of the red and
near-infrared bands was demonstrated to be enough to work with the
proposed extendedmethod, but the use of easily disturbed bandswill in-
troduce additional noise. Fig. 8 shows a comparison of field measure-
ments and LAI derived from different band combinations. LAI data
derived from two bands show better agreement with field measure-
ments (R2 = 0.8315 and RMSE = 0.9327).

The conclusion of this section is also similar to that of previous stud-
ies. Kuusk (1995b) pointed out that the leaf area index of the canopy
was best determined using simultaneous measurements in the red
and NIR spectral regions. Fang and Liang (2003b) developed a genetic
algorithm with a canopy radiative-transfer model to retrieve LAI and
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Fig. 7. Validation results for spectral information. The olive line marked as “Retrieved_MOD_VGT_MISR” represents the inversion result for multispectral bands, while the violet line
marked as “Retrieved_MOD_VGT_MISR_2bds” represents the result for the red and near-infrared bands.
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found that the use of red and near-infrared band reflectance provided a
very good estimation of LAI. Similar results were reported by McCallum
et al. (2010). The usage of red and near-infrared bands instead of multi-
spectral bands can meet the demand of the proposed extended method
Fig. 8. Comparison of retrieved LAI with field LAI. “LAI-Multispectral” represents LAI values deri
resents LAI values derived from these two specific bands.
and achieve better agreement with field measurements. In summary, a
selection of spectral information aimed to eliminate noise from disrup-
tive factors and to identify the sensitive bands can improve retrieval
performance.
ved frommultispectral reflectance data, while “LAI-Red and Near-infrared-red Bands” rep-
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Fig. 9. Performance with additional angular information. The olive line marked as “no angular information” and the black line marked as “with angular information” represent retrievals
based on combinations of angular reflectance.
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3.3. Assessing angular information

MISR is a satellite sensor unlike any that has flown in space before. It
is designed to provide global imagery at nine discrete viewing angles
and in four visible/near-infrared spectral bands. LAI is a biophysical var-
iablewith obvious spatial structure. Therefore, it would be interesting to
confirm whether the additional angular information can provide better
Fig. 10. Comparison of retrieved LAI with field LAI. “LAI with angular information” re
results. Hence, a comparison testwas designed to evaluate performance
based on the conclusions of two previous tests. First,MODIS, Vegetation,
and MISR LAI were used to construct an LAI climatology and dynamic
model, and the red and near-infrared surface reflectance bands were
used recursively to update the predictions of the dynamic model.
Here, nadir MISR BRF data only were used. Second, MISR BRF data for
an additional four neighboring observation viewing angles (−45.6°,
presents the LAI values derived with additional angular reflectance information.

image of Fig.�9
image of Fig.�10


35Q. Liu et al. / Remote Sensing of Environment 145 (2014) 25–37
−26.1°, +26.1°, and +45.6°) were used in the proposed extended
method. Fig. 9 shows the performance achievedwith additional angular
information.

The inclusion ofMISR data introduces a new type of information (i.e.,
angular information included in nine-directional land-surface reflec-
tance) because of its particular mode of observation. A direct compari-
son was carried out to assess the angular information in the proposed
extendedmethod. Generally, Fig. 10 shows clearly that additional angu-
lar information does improve the performance of the proposedmethod,
with R2 increasing from 0.8315 to 0.8823 and RMSE decreasing from
0.9327 to 0.7765. Fig. 9 shows that additional angular information con-
tributed tomodest improvement onmost occasions, butwas not always
significant. The reasonable explanation for this is the lack of valid MISR
BRF data because of the specific mode of observation and unstable at-
mospheric conditions. For instance, very fewBRFdata pointswere avail-
able for Bondville, just one or two points after the quality-control
process; this observation could also refer to Fig. 5. Only one MISR BRF
data point was available for Bondville in 2005; this restricted the im-
provement available from additional angular information. This situation
is common among other validation sites, where the number of valid BRF
data points was no more than ten. Although the inclusion of additional
MISR BRF viewing angles could have an effect, the lack of validMISR BRF
data restricts the opportunities for further improvement.

4. Discussion

4.1. Main contributions of the current research

The first contribution of the proposed extended method is the
dynamic update of LAI climatology. An iterative method has been
proposed to improve its estimation. The LAI values retrieved by the pro-
posed extended method are regarded as an approximation of the real
LAI, which is more accurate than LAI climatology. As a result, the
retrieved LAI values could be substituted for LAI climatology to provide
more accurate time-series LAI values. Then the proposed method recur-
sively updates LAI by combining predictions from a dynamicmodel with
high-quality land-surface reflectance data from three satellites. In
Section 2.7, the variations in RMSE between retrieved LAI and LAI clima-
tology were analyzed. The decline of RMSE at the beginning of the itera-
tions meant that LAI climatology values were approaching the retrieved
LAI. Then, the RMSE continued to fluctuate with a small magnitude; this
indicates that further updates of LAI climatology would not make a sig-
nificant difference. However, the continued iterations might have exag-
gerated certain variations in the retrieved data (e.g., Rosemout-G19
site, see Fig. 4). In conclusion, a 5 ∗ 1 sliding window was defined to de-
termine the minimum RMSE value, and the corresponding retrieved LAI
was regarded as the best estimate from our proposed method.

Besides the dynamic update of LAI climatology, another contribution
of this study is the integration of data frommultiple sensors with differ-
ent spectral, spatial, temporal, and angular information to reveal the
best combination of remotely sensed information. It is now an impor-
tant research challenge to solve the ill-posed problem of estimating
land-surface variables from remote sensing data (Liang & Qin, 2008).
LAI data from multiple sensors have been used to fill the gaps due to
the limited information from single-observation systems to produce
better estimates of LAI climatology. The additional satellite reflectance
is able to narrow the time intervals between neighboring steps in the
EnKF technique. The performance of temporal, spectral, and angular in-
formation was assessed in Section 3, and the results demonstrate that
the integration of MODIS, SPOT/VEGETATION, and MISR data produced
better LAI estimates than any one or two sources. In addition, LAI esti-
mation with reflectance in red and near-infrared bands works better
than those with multispectral bands. The introduction of MISR angular
information could also contribute to further improvement of the
estimates, but is restricted by the scarcity of valid data. Obviously, all
the evidence points to the conclusion that the integration of multi-
sensor LAI (i.e., based on MODIS, SPOT/VEGETATION, and MISR),
corresponding red and near-infrared reflectance, and multi-angular
MISR information is the best way to retrieve LAI using the proposed
new method.

4.2. Limitations of this study

The method proposed here has taken advantage of routinely pro-
duced satellite data to provide better LAI estimation. However, there
still exist several limitations which need to be mentioned.

The first limitation is related to the satellite data themselves, which
are constrained by instabilities in observation such as calibration errors,
atmospheric, cloud contamination, view-illumination geometry effects,
and saturation of reflectance in dense canopies. Moreover, the quality
flags accompanying the LAI and surface reflectance products do not
infallibly identify their quality. Although we have tried our utmost to
address these problems, some errors may still exist.

The second limitation is the elimination of the effect of the foliage
clumping index. In our study, the clumping index is restricted to the
POLDER observation cycle, and the CYCLOPES LAI is not an absolutely
effective estimate because it considers the clumping representation at
landscape scale. There still exist some uncertainties in the conversion
from effective LAI to true LAI based on the statistical mean values of
specific biomes. Use of the higher-resolution clumping index derived
from MODIS BRDF products (if available) will be addressed in further
research.

The last limitation is the representation of biomes in the validation
section. To test the performance of the retrieved LAI effectively, sites
with more measurements during single years are needed. Consequent-
ly, the small number of available sites for this research leads to limited
representation of certain vegetation biomes, especially forest. More-
over, the field-measured LAI values collected from existing research
networks are each the mean value of several discrete sampled values.
Certain errors associated with scale effect still exist, although various
sampling methods have been proposed. The ideal LAI data used to vali-
date the retrieved LAI should be derived from high resolution imagery.
This topic will be explored in future research.

5. Conclusions

The pressing need for land-surface ecosystems modeling and envi-
ronmental monitoring has led to a demand for high-quality, long-term
consistent LAI products. However, currently available global LAI prod-
ucts may not meet the requirements from the viewpoint of accuracy
and consistency. LAI gaps due to various reasons also impose restric-
tions on the further application of data. In the method proposed here,
an existing inversion scheme was extended to integrate MODIS, SPOT/
VEGETATION, andMISR data and to take advantage of temporal, spectral
and angular information. To ensure good inversion performance, a qual-
ity flag layer and an SGfilter were used to eliminate uncertainties due to
unstable satellite observations and to produce a relatively smooth LAI
seasonal-variation curve (i.e., LAI climatology). A clumping index
based on POLDER was used to convert effective LAI to true LAI.
Validation sites from several typical biomes were used to test the appli-
cability of the proposedmethod. An iterativemethodwas also proposed
to perfect the estimation of LAI climatology andwas demonstrated to be
effective. Furthermore, three progressive testswere carried out to assess
the performance of temporal, spectral, and angular information.

In summary, temporal information is indeed vital. The involvement
of MODIS, SPOT/VEGETATION, and MISR data can provide more valid
LAI observations to improve the specification of change tendencies
and to construct a better LAI climatology. Moreover, the additional sur-
face reflectance information can narrow the time intervals and thereby
increase the number of results which are updated by the EnKF tech-
nique. The rejection of easily disturbed reflectance bands (i.e., blue
and green bands) can avoid errors from the atmosphere and other
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factors. MISR multi-angular information is capable of representing spa-
tially structured LAI data, although it is also restricted by the limited
number of availableMISR BRF data points. All these results show the po-
tential to achieve better retrieval than with a single sensor. The valida-
tions over the six sites are consistent with the above explanation.
Temporal information fromMODIS, Vegetation, andMISR data, spectral
information from red and near-infrared bands, and angular information
fromMISR BRF data are the best combination of remotely sensed infor-
mation to obtain the best estimated LAI using the proposed extended
method.
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