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Land-cover updating from remote-sensing data is an effective means of obtaining
timely land-cover information. An automatic approach integrating iterative training
sample selection (ITSS) and a Markov Random Field (MRF) model is proposed in this
study to overcome the land-cover update problem when no previous remote-sensing
data corresponding to the land-cover data are available. A case study in the Beijing
region indicates that ITSS can effectively select reliable training samples based on
historical land-cover data and that ITSS with MRF can achieve satisfactory land-cover
update results (overall classification accuracy: 83.1%). The MRF model can effectively
reduce salt-and-pepper noise and improve overall accuracy by approximately 6%. The
proposed approach is completely unsupervised and has no strict requirements for
newly acquired remote-sensing data for land-cover updating.

1. Introduction

Global and regional land-cover status and changes are fundamentally important for climate
and environmental change studies (Turner, Lambin, and Reenberg 2007; Jin et al. 2013).More
importantly, accurate and timely land-cover information is an essential factor for improving
the performance of ecosystem, hydrologic and atmospheric models (Bounoua et al. 2002; Jung
et al. 2006; Miller, Guertin, and Goodrich 2007). Due to natural causes and human activities,
land-cover is changing throughout the world. Therefore, it is important to quantify and
monitor these land-cover changes to support global and environmental changes studies.

Remote sensing is an effective means for land-cover monitoring with its ability to
provide quickly broad, precise, impartial and easily available information on the land
surface (Hansen et al. 2000; Liu et al. 2003). Many global and regional land-cover data
sets have been derived from remote-sensing data (Hansen et al. 2000; Friedl et al. 2002;
Liu et al. 2010; Gong et al. 2013), but these data sets use only data acquired during one or
several years and represent land-cover characteristics for a specific period, without long-
term change information. Land-cover update using timely remote-sensing data to support
global change studies is one feasible strategy. Furthermore, the large and growing satellite
data archives make it possible to achieve this requirement.

Traditional land-cover updating approaches determine and classify changed areas based
on co-registered multi-temporal remote-sensing data analysis (Yang et al. 2003; Chen et al.
2012; Jin et al. 2013). Spectral-based change-detection methods are commonly used for
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land-cover change detection; for example, Change Vector Analysis has been proposed to
update the 2001 national land-cover database (Xian, Homer, and Fry 2009). Spectral-based
change-detection methods can produce an accurate land-cover map, but have strict require-
ments for remote-sensing data, specifically that two sets of data acquired in different years
should come from the same phenological period. Furthermore, nearly all current methods
need historical remote-sensing data corresponding to the historical land-cover data for
change detection. If only historical land-cover data are available and the corresponding
remote-sensing data are missing, or if the land-cover data are not produced using remote-
sensing data, change-detection-based land-cover updating methods will lose efficacy.
Therefore, developing robust, efficient and accurate automated or semi-automated methods
for cost-effective update of land-cover maps in this situation is a challenging work.

The primary goal of this research is to develop and evaluate an automatic land-cover
updating approach using remote-sensing data in situations where no historical remote-sensing
data are available. First, an iterated training samples selection (ITSS) procedure is used to
select training samples automatically based on historical land-cover data. Then the samples are
used to classify newly acquired remote-sensing data, and the map is refined based on
comparison of the classification result with that of the last iteration until the difference between
two successive classification maps achieves a satisfactory consistency. In addition, a Markov
Random Field (MRF) model is integrated into the classification procedure to reduce salt-and-
pepper noise which is usually apparent in pixel-based classification of remote-sensing data.

2. Study area and data

2.1. Study area

A rectangular subset region of Beijing is selected to validate the presented approach. The
study area is located between latitude 39º58′N and 40º9′N and longitude 116º11′E and
116º30′E, with an area of about 500 km2. Beijing is located in the northern part of the
North China Plain and belongs to the temperate climatic zone. The average annual
temperature and precipitation is about 12ºC and 664 mm, respectively. The numerous
land-cover types in this area, including forest, cropland, built-up areas and water, have
made land-cover updating in this region a representative of the difficulties encountered.
Furthermore, Beijing has undergone rapid urbanization and economic growth in recent
years, especially after the 29th Olympic Games. Therefore, a land-cover map update
experiment in this region is a suitable choice.

2.2. Data and processing

A Landsat 8 Operational Land Imager (OLI) data set (path/row: 123/32) of the study area
on 12 May 2013 was downloaded from the United State Geological Survey website
(http://glovis.usgs.gov/). The OLI data was not affected by cloud, and the quality of the
multispectral data was good. OLI data processing mainly included radiance calibration
and subset selection. Radiance calibration was performed to convert the digital numbers
(DN) value to surface spectral reflectance. Atmospheric correction was done using
FLAASH tools provided by ENVI version 5.0 (Exelis, Visual Information Solutions,
Boulder, CO, USA). Subset selection was done to extract the data covering the study area
for land-cover map updating.

The finer-resolution global land-cover data set produced by Gong et al. (2013) was
selected as the historical land-cover, which was based on classification of Landsat TM/
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ETM+ data using manually selected training samples and a support vector machine
classifier, and the overall classification accuracy was 71.5% based on the validation
samples. The Landsat data used for classification in this land-cover map was acquired
on 22 September 2009. According to the class type distribution in the subset region, five
land-cover types were selected as the final classification types, including water, crops,
forest, impervious surfaces and bare land.

3. Method

3.1. Classification method

The Maximum-likelihood classifier (MLC) is selected for land-cover map updating in this
study because MLC offers high calculation speed with large training samples, unlike some
non-parametric classification methods. MLC classifier assumes that a hyper-ellipsoid
decision volume can be used to approximate the shape of the data clusters. For a given
unknown pixel, described by a vector of features, the probability of membership in each
class is calculated using the mean feature vectors of the classes, the covariance matrix and
the prior probability (Jia et al. 2011). The unknown pixel is considered to belong to the
class with the maximum probability of membership.

3.2. Markov random field model

The MRF model is usually used to reduce salt-and-pepper noise in pixel-based remote-
sensing data classification (Bruzzone and Prieto 2000; Chen et al. 2012). In the MRF
model, the probability of a pixel belonging to a given class (Cl) is determined both by the
spectral information and by its neighbouring pixels.

PðClði; jÞÞ ¼ 1

Z
exp½�UðClði; jÞÞ� (1)

UðClði; jÞÞ ¼ Ucontext ðClði; jÞÞ þ Uspectrum ðClði; jÞÞ (2)

where Z is a normalizing factor and U, Ucontext and Uspectrum are the total energy, energy of
the context and energy of the spectrum. Uspectrum is the log function of the posterior
probability

Uspectrum ðClði; jÞÞ ¼ � ln ðPspectrum ðClði; jÞÞÞ (3)

where Pspectrum is the posterior probability derived from the MLC classifier. The energy of
the context is calculated based on the labels of the neighbouring pixels (Bruzzone and
Prieto 2000).

Ucontext ðClði; jÞÞ ¼ Ucontext ðClði; jÞ=fClðg; hÞ; ðg; hÞ 2 Nði; jÞgÞ
¼

X
ðg;hÞ2Nði;jÞ

βδkðClði; jÞ;Clðg; hÞÞ (4)

where β is a constant set to 1.6 in this study, N(i,j) is a set of neighbouring pixels set to a
second-order neighbourhood with N(i, j) = {(i ± 1, j), (i, j ± 1), (i + 1, j ± 1), (i-1, j ± 1)},
and δk is expressed as:

150 K. Jia et al.
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δkðClði; jÞ;Clðg; hÞÞ ¼ �1; if Clði; jÞ ¼ Clðg; hÞ
0; if Clði; jÞ�Clðg; hÞ

�
(5)

Land-cover mapping based on the MRF model classify an image by minimizing the total
energy function in Equation (1) using an optimization algorithm. In this study, the commonly
used iterated conditional modes (ICM) approach is used to optimize the energy function
because ICM has acceptable efficiency and accuracy in the classification of remotely sensed
images (Bruzzone and Prieto 2000; Liu et al. 2008). For all changed pixels,Cl(i, j) is updated to
the class that minimizes the total energy function in Equation (1), and this process is repeated
until convergence is reached. Finally, isolated pixels are more likely to be replaced by their
neighbouring class type, thereby improving the spatial consistency of the classification map.

3.3. Iterative training sample selection

Automatic training sample selection is performed under the hypothesis that land-cover
changes occur only in small areas, and then the training samples are selected in the
unchanged areas based on historical land-cover data. An iterative procedure has been
developed to refine the unchanged area to select the training samples, which includes the
following steps: (1) all pixels in the historical land-cover map are initially selected as the
training sample; (2) the training samples are used to train the MLC classifier for newly
acquired remote-sensing data classification and to calculate the posterior probability
which is used for the MRF model; (3) the classification result is refined using the MRF
model; (4) the refined classification result is compared with that from the last iteration to
detect the changed and unchanged pixels, and the changed pixels are removed from the
training samples to obtain the refined pixels; (5) the consistency rate, which is defined as
the ratio of the number of unchanged pixels to the total number of pixels, is calculated. If
the consistency rate reaches 99% compared to the map produced at the previous iteration,
the iteration stops, and the classification result of the last iteration is confirmed as the final
updated land-cover map. Otherwise, the refined training samples are used to classify the
remote-sensing data; (6) steps (2)–(5) are repeated until the consistency rate reaches 99%
compared to the map produced at the previous iteration.

This iterative procedure is expected to refine the training samples to improve classi-
fication accuracy by selecting the unchanged areas at every iteration step. A higher
consistency rate indicates that changes in the training samples have less influence on
remote-sensing data classification and that the final training samples have been refined to
classify the remote-sensing data. Consequently, the final updated land-cover map is
obtained by classifying the remote-sensing data using the final refined training samples.

3.4. Classification accuracy assessment

To validate the performance of land-cover map updating by the ITSS and MRF
approaches using Landsat OLI data, the classification results were assessed by visual
observation and quantitative classification accuracy indicators. Randomly selected sample
pixels were used to assess land-cover classification accuracy quantitatively. Each valida-
tion sample was identified by visual interpretation with the help of GoogleEarth and the
researchers’ knowledge and experience. The final numbers of sample pixels for classifica-
tion accuracy estimation were 47 pixels for water, 216 pixels for crops, 255 pixels for
forest, 586 pixels for impervious surfaces and 85 pixels for bare land. The overall
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classification accuracy, producer’s accuracy and user’s accuracy were then estimated for
quantitative classification performance analysis (Congalton and Green 1999; Tso and
Mather 2001; Foody 2009, 2002).

4. Results

4.1. Land-cover updating using ITSS and the MRF model

Figure 1 shows the relationship between consistency rate and number of iterations. ITSS
with or without the MRF model algorithm rapidly reaches the 99% consistency rate by the
fifth or sixth iteration. The results indicate that the ITSS process can effectively refine the
training samples and achieve a stable classification result. Furthermore, ITSS with the MRF
model reaches the 99% consistency rate more quickly than without the MRF model, which
suggests that the MRF model has a significant effect on the land-cover updating approach.

The land-cover updating results using ITSS with and without the MRF model are
shown in Figure 2. From the visual perspective, each class type could be identified
effectively using ITSS with or without the MRF model based on expert knowledge,

Iterration number
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Figure 1. Relationship between consistency rate and number of iterations.

Legend

Bareland

Water

Impervious
Forest
Crop

Figure 2. Land-cover updating using the ITSS with (left) and without (right) the MRF model.
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indicating satisfactory land-cover updating results using the proposed approach. Forest
was distributed mainly in the western mountain regions of Beijing and the Beijing
Olympic Forest Park region. Crops and bare land were distributed mainly in the northern
plain regions of the study area, while impervious surfaces were distributed mainly in
urban regions. The main difference in the land-cover updating results using ITSS with and
without the MRF model was that ITSS with the MRF model could effectively reduce salt-
and-pepper noise in the classification map and achieve a smoother result, although some
thin linear objects could also be mistakenly removed. In general, the distribution of land-
cover types in the updated map was consistent with the actual situation, and ITSS with the
MRF model achieved smoother land-cover classification results.

4.2. Classification accuracy of land-cover updating

The confusion matrixes of land-cover updating using ITSS with and without the MRF
model are shown in Table 1. Satisfactory land-cover updating results were achieved using
ITSS both with and without the MRF model. The overall performance of ITSS with the
MRF model approach (overall accuracy 83.1%) was better than that without the MRF
model (overall accuracy 77.3%). In other words, the MRF model improved the overall
classification accuracy by approximately 6%. These results suggested that the MRF model
could significantly improve classification accuracy when using the ITSS approach.

Bare land had the lowest user and producer accuracy and showed the maximum
confusion with impervious surfaces and crops (Table 1). Other class types all showed
better separation from each other, with higher user and producer accuracy. The confusion
of bare land and impervious surfaces was caused mainly by the similar spectral features of
these two class types, or perhaps by mislabelling in the historical data set. In addition,
bare land did not always remain bare throughout the year, because bare land could later be
planted with crops. The different phenological periods of the acquired OLI data and the
remote-sensing data used for historical land-cover classification brought about errors in
training sample selection and resulted in misclassification of bare land and crops. Overall,

Table 1. Confusion matrixes for land-cover update using the ITSS with and without MRF model.

Mapped
class

Ground truth (pixels)

User accuracy
(%)

Producer
accuracy (%)Water Crop Forest Impervious

Bare
land Total

ITSS with MRF model

Water 43 0 1 4 0 48 89.6 91.5
Crop 0 199 28 48 25 300 66.3 92.1
Forest 2 11 213 0 0 226 94.3 83.5
Impervious 2 5 13 486 13 519 93.6 82.9
Bare land 0 1 0 48 47 96 48.9 55.3

ITSS without MRF model

Water 39 1 4 4 0 48 81.3 83.0
Crop 0 199 47 66 22 334 59.6 92.1
Forest 4 6 195 4 0 209 93.3 76.5
Impervious 4 8 9 429 6 456 94.1 73.2
Bare land 0 2 0 83 57 142 40.1 67.1

Total pixels 47 216 255 586 85 1189
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the integration of ITSS with the MRF model showed satisfactory performance in land-
cover updating when no previous remote-sensing data corresponding to the historical
land-cover map were available.

5. Discussion

The proposed approach is completely automatic without any human interaction, which over-
comes the problems of time cost and labour intensiveness in traditional supervised classifica-
tion depending on manual training sample selection. The automatic approach also avoids
training sample selection error arising from different interpreters. The ITSS process can select
reliable training samples and achieve satisfactory land-cover update results, while the iterative
process converges in no more than six iterations, keeping computational cost low.

Traditional land-cover update methods usually detect changed areas first through
comparison between newly acquired and historical remote-sensing data and then re-classify
the changed areas to complete the update process. However, sometimes the historical
remote-sensing data corresponding to the historical land-cover data are missing, or the
historical land-cover data were not produced by classifying remote-sensing data, for
example, from ground survey mapping. The proposed approach has been developed pre-
cisely to overcome the problem of missing historical remote-sensing data corresponding to
historical land-cover data. This approach can extend the land-cover data source selection
range and use older land-cover data which were not produced using remote-sensing data.

The proposed approach has no strict requirements for newly acquired remote-sensing
data. The only condition is that the newly acquired remote sensing and historical land-
cover data must have the same spatial resolution. Compared to some change-detection
methods which need two sets of remote-sensing data which were acquired at the same
phenological period in different years or from the same sensor, the proposed approach can
greatly extend the remote-sensing data-source selection range (Chen et al. 2003; Xian,
Homer, and Fry 2009). The approach thus overcomes the difficulty in acquiring remote-
sensing data from the exactly same phenological period, free of cloud influence.
Furthermore, spectral attenuation caused by an aging satellite sensor may lead to errors
in change-detection processes using spectral change analysis, but the proposed approach
avoids the spectral change-detection process. Therefore, much more newly acquired
satellite remote-sensing data can be used to update historical land-cover data.

The proposed approach has some potential limitations. First, it assumes small land-
cover changes between the newly acquired data period and the historical data period. If
large land-cover changes have occurred, the initial selection of training samples in the
ITSS process will select large incorrect samples, leading to misclassification in large
areas and loss of efficacy in the training sample refinement process. This phenomenon
can also occur when historical land-cover data are of poor quality, because error propaga-
tion is complex and small errors in training samples may be a source of major MIS-
interpretations as found by Foody (2010, 2013). In addition, if one of the land-cover
types represented by a very small number of pixels in the historical land-cover data, this
class type may have low classification accuracy in the updated land-cover map because
the small number of pixels may be classified into other types. Moreover, if a new class
has appeared between data acquisitions, the proposed method cannot recognize the new
class type. Furthermore, the MRF model may remove linear or small objects, and there-
fore the proposed approach is not suitable for situations where the land surface exhibits a
high degree of fragmentation or where the land-cover update objective is to examine
small or linear land-cover objects, such as roads.

154 K. Jia et al.
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In this study, MLC is selected as the classification method because it is popular and easily
implemented, and the MLC classifier is also suitable for large training samples. However, at
present, manymore advanced non-parametric classification methods have been developed for
land-cover classification to improve accuracy, such as support vector machine, neural net-
works and design trees (Lu andWeng 2007). Non-parametric classifiers will be investigated to
improve the performance of the proposed approach in future research. In addition, in this
research, only one temporal remote-sensing data set is used to update the historical land-cover
map. Multi-temporal information, which can be helpful to improve classification accuracy, is
not involved in this study, but will be in future work to improve land-cover update accuracy.

6. Conclusions

This paper presents an automatic approach integrating ITSS and a MRF model for land-
cover update in situations where no previous remote-sensing data corresponding to the
land-cover map are available. A case study in Beijing using OLI data indicates that the
proposed method can achieve satisfactory land-cover updating results, and that the MRF
model can effectively reduce salt-and-pepper noise and improve classification accuracy.
The proposed approach is simple and easy to use for updating land-cover without
corresponding historical remote-sensing data. Further research will focus on involving
advanced non-parametric classifiers in the remote-sensing data classification step and
using multi-temporal remote-sensing data to improve the land-cover update accuracy.
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