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The temporal and spatial distribution of solar energy in urban areas is highly variable
because of the complex building structures present. Traditional GIS-based solar radia-
tion models rely on two-dimensional (2D) digital elevation models to calculate insola-
tion, without considering building facades and complicated three-dimensional (3D)
shading effects. Inspired by the ‘texture baking’ technique used in computer graphics,
we propose a full 3D method for computing and visualizing urban solar radiation based
on image-space data representation. First, a surface mapping approach is employed to
project each 3D triangular mesh onto a 2D raster surface whose cell size determines the
calculation accuracy. Second, the positions and surface normal vectors of each 3D
triangular mesh are rasterized onto the associated 2D raster using barycentric inter-
polation techniques. An efficient compute unified device architecture -accelerated
shadow-casting algorithm is presented to accurately capture shading effects for large-
scale 3D urban models. Solar radiation is calculated for each raster cell based on the
input raster layers containing such information as slope, aspect, and shadow masks.
Finally, a resulting insolation raster layer is produced for each triangular mesh and is
represented as an RGB texture map using a color ramp. Because a virtual city can be
composed of tens of thousands of triangular meshes and texture maps, a texture atlas
technique is presented to merge thousands of small images into a single large image to
batch draw calls and thereby efficiently render a large number of textured meshes on
the graphics processing unit.

Keywords: solar radiation model; 3D triangular mesh; surface mapping; 2D raster

1. Introduction

Solar radiation models have been implemented in GIS frameworks to facilitate integrated
spatial analysis and mapping. GIS-based solar radiation models provide rapid, cost-
effective, and accurate estimations of insolation over large geographic areas and take
into consideration surface inclination, aspect, and shadowing effects (Hofierka and Suri
2002). The solar analyst (SA) module of ESRI ArcGIS (Fu and Rich 2000) and the r.sun
module of GRASS GIS (Hofierka and Suri 2002) are two of the most widely used tools
for insolation modeling. They have been sufficiently tested and shown to be capable of
accurately capturing both temporal and spatial variability. In GIS-based solar models,
two-dimensional (2D) digital elevation models or digital surface models (DSM) are
typically used to calculate shading effects and surface orientation, which are key factors
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in determining local variability (Dubayah and Rich 1995, Kumar et al. 1997). Such
models have been used to study solar energy distribution in various application contexts
(Kryza et al. 2010, Nguyen and Pearce 2010).

A good solar radiation model should be able to account for four groups of factors, that
is, the Sun–Earth position, topography, atmospheric characteristics, and overcast condi-
tions, with the first two groups treated as the Sun–Earth geometric modeling in the GIS
framework (Liu et al. 2012). Shading may result in significant differences in the received
solar energy because of blocking of direct sunbeams or diffuse light (Liu et al. 2012).

LiDAR-based data acquisition technology has enabled the rapid reconstruction of
DSM, which can be fit directly into existing 2D models to assess building insolation
(Agugiaro et al. 2011, Niko and Borut 2013). However, such applications do not take into
account building facades and complicated shadowing effects, which could have major
implications on an urban scale.

Virtual cities can be reconstructed from LiDAR point clouds, extruded from 2D
building footprints or manually constructed by artists. Improvements in data acquisition
capacities and computational technologies have facilitated the widespread application of
two-dimensional (3D) virtual cities for geospatial analyses (Yasumoto et al. 2012, Coutu
et al. 2013), which require new GIS methods to study urban-scale solar energy patterns,
considering both building roofs and facades. The combination of DSM and vectorial
building shapes provides a better understanding of the solar energy distribution on vertical
surfaces through slicing of a building into several stories for separate calculations (Carneiro
et al. 2008). However, the insolation distribution on facades is not accurately captured
because only a limited number of slices are created, due to the limits on computational and
storage capacities. Ray-tracing packages, for example, Radiance and Heliodon, employ
physically based light propagation models to compute solar radiation on a microscopic
scale, as demonstrated in several previous studies (Mardaljevic and Rylatt 2003,
Compagnon 2004, Merino et al. 2010). Nevertheless, ray-tracing techniques are computa-
tionally too costly to be utilized for large-scale urban models, and such micro-scale
calculations may lead to many uncertainties that cannot be addressed in a GIS context.

Recently, a combined vector–voxel 3D solar radiation model (v.sun) was developed in
the framework of GRASS GIS (Hofierka and Zlocha 2012). With the v.sun model, 3D
vector objects are all segmented into smaller polygonal elements using a voxel-intersecting
rule; thus, the accuracy of the calculation depends on the voxel resolution. The v.sun model
has been shown to provide acceptable solutions to the problem of computing solar radiation
in complex urban areas using 3D geometric models. Because voxel-based real-time render-
ing is still under study (Laine and Karras 2010), only triangle rasterization is universally
supported on the graphics processing unit (GPU) rendering architecture. According to the v.
sun model, the number of segmented polygons increases with the voxel resolution; thus,
interactive visualization for large-scale 3D virtual cities requiring high-resolution solar
energy results may be less efficient because a large number of triangle primitives need to
be rendered on the GPU. Nevertheless, spatial resolution is extremely important in the study
of urban-scale solar energy potential because coarse-scale calculations may significantly
underestimate or completely miss shading losses because of shadowing effects (Nguyen
and Pearce 2012). Therefore, the feasibility of developing a visualization-oriented 3D solar
model for urban buildings warrants further study.

Inspired by the v.sun model (Hofierka and Zlocha 2012), we attempt to develop a
new 3D method to compute solar radiation for large-scale urban models, taking into
account both building roofs and facades and achieving efficient computation, storage, and
interactive visualization.
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2. Data representation for 3D urban models

Urban features, such as buildings, are represented by 3D vector objects defined by a set of
3D surfaces (polygons, facets); thus, it can be quite straightforward to calculate the
incoming solar radiation for each of these 3D polygons (Hofierka and Zlocha 2012). In
comparison to voxels, triangular meshes provide far more compact storage for geometric
information and are natively supported by the current GPU for real-time rendering (Laine
and Karras 2010). However, polygons are not ideal for representing highly detailed
surface properties because of the GPU’s inefficiency in processing geometric complexity.
In practice, triangular meshes are combined with 2D texture maps to simultaneously
represent 3D geometric information and surface properties. For example, many 3D
urban models are richly textured with surface property information obtained from photo-
graphy or aerial imaging to make them more realistic (Tsai and Lin 2007). Voxels and 3D
triangular meshes are two typical data models used to represent 3D geometric shapes and
surface properties. They are characterized and compared in Table1 and Figure 1.

The comparisons made in Table 1 suggest that triangular meshes are more convenient
for 3D geometric data representation in terms of GPU-based visualization under the
present computational architecture. The surface properties of triangular meshes can also
be compactly represented by 2D raster images (texture maps) to facilitate data storage,
query, retrieval, and geovisualization (Lorenz and Döllner 2010). However, two types of

Table 1. Comparisons of voxels and triangular meshes for 3D model representation.

Voxels Triangular meshes

Representation Unified geometry and surface
properties

Mesh-based geometry and texture-based
surface properties

Element Voxel Triangle and texel
Storage Efficient for surface properties but

not compact for geometric data
because each voxel needs
specific information

Efficient for surface properties with texture
mapping and compact for geometric data
because a facet can be described by a
few vertices

Spatial
organization

Regularly structured with natural
spatial indexing, thus enabling
rapid shadow-casting calculation

Irregularly structured and requiring specific
spatial indexing; thus, a specific
shadow-casting algorithm is needed

Visualization Not supported by the conventional
GPU rendering architecture

Natively supported by the GPU rendering
architecture for triangle rasterization and
texture mapping

Figure 1. Comparisons of voxels and triangular meshes for 3D model representation.
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difficulties must be addressed to implement a GIS-based solar model with such a data
representation:

(1) GIS-based models necessitate the discretization of computational domains into
regularly divided elements, for example, raster cells. Because triangles do not
conveniently fit into such frameworks, certain data discretization techniques must
be used to transform the triangular meshes into regularly partitioned elements.

(2) Shading calculations for 3D urban models are computationally intensive. The
conventional triangle-based shadow-casting algorithm is prohibitively inefficient
for such applications.

3. Test data

To demonstrate the applicability of the proposed method for 3D urban models, we have
prepared a large-scale 3D virtual city (Figure 2) covering part of Boston. Boston is located
at approximately 42°21′28″N and 71°03′42″W and is the largest city of the US State of
Massachusetts.

The data set is a collection of 22,185 polygon shapes that describe building footprints
and the number of stories, downloaded from the website of the open-source project
osgEarth. This data set serves as the foundation for creating 3D urban models roughly
corresponding to CityGML LoD1. Assuming a height of 3.5 m for a single story, each
building is extruded and tessellated using a pair of 3D triangular meshes, that is, the roof
and the walls. Consequently, the virtual scene is composed of 44,370 3D triangular
meshes with 22,185 walls and 22,185 roofs. The total surface area for the building
roofs and walls amounts to 31.39 million m2, as determined by aggregating all the triangle
primitives. The 3D scene is oriented so that the true north is aligned with the positive
direction of the model-space Y axis (0, 1, 0) (Figure 2).

Figure 2. Boston urban models.
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4. Mesh-raster-based 3D solar radiation model

We propose herein a mesh-raster-based method to compute and visualize urban insolation
using 3D geometric models. The method has the following features:

(1) Incorporation of building facades in the calculation.
(2) Compact storage of calculation results.
(3) A uniform metric for calculation accuracy based on raster cell resolution.
(4) Accurate capture of shading-induced micro-scale variability.
(5) Efficient GPU-based interactive visualization.

Our approach exploits the ‘texture baking’ technique used in computer graphics. The
basic assumption is that a 3D triangular mesh can be discretized into a set of 2D raster
cells with certain 3D–2D surface mapping techniques, as shown in Figure 3.

The r.sun model is employed as the underlying GIS model to calculate the various
components of the global solar radiation. Although multiple GIS solar models exist, the
r.sun model is freely available with full source codes and has been tested in many studies
with satisfactory results (Hofierka and Kanuk 2009, Nguyen and Pearce 2010, Agugiaro
et al. 2011). Based on 2D raster representations of 3D surfaces (Figure 3), cell-by-cell
calculations can be performed to extract the necessary input variables, for example, aspect,
slope, and shadowmask, which are required by the r.sun model to determine the global solar
radiation. The insolation results are produced as raster layers that can then be represented as
RGB texture maps using a color ramp. Each texture map is bound to the corresponding
triangular mesh and visualized using GPU-based real-time rendering techniques.

Shading is one of the most important factors in local spatial-temporal variability for
areas of high geometric complexity. A ray-casting approach is used to calculate the
shadowing effect for each raster cell by shooting a solar ray to perform ray-triangle
intersection tests. The brute-force shadow-casting algorithm requires that a ray-triangle
intersection test be performed with every triangle in the scene. Such a naïve implementation
will certainly impose an overwhelming computational burden. Consequently, we seek to
improve the efficiency of the brute-force shadow-casting algorithm by the following means:

(1) Employing suitable culling techniques to avoid as many ray-triangle intersection
tests as possible. Such techniques should take into account the geographic
characteristics of urban buildings, such as the shadow length.

(2) Leveraging the GPU to parallelize the raster-based calculations. Because an
independent solar ray needs to be cast for each raster cell, parallelization can be
expected to effectively accelerate such processes.

Figure 3. 3D–2D surface mapping (Lorenz and Döllner 2010).
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4.1. Computation and visualization pipeline

In general, the computation and visualization framework consists of six major stages:
3D–2D surface mapping, geometry rasterization, model input preparation, insolation
calculation, symbolization, and visualization (Figure 4). For each triangular mesh, the
following actions are performed:

(1) A unique 2D raster collection object is created using surface mapping techniques.
The raster collection can contain various attributes of the triangular mesh, for
example, the normal vector, aspect, and shadow mask.

(2) The positions and normal vectors are rasterized and stored in the related raster
collection as separate layers.

(3) The slopes, aspects, and shadow masks are calculated and stored as raster layers
for model input.

(4) The input layers are fetched from the raster collection object and forwarded to the
incorporated r.sun model to obtain the insolation values as a raster layer.

(5) The output insolation layer is symbolized using a color ramp to generate an RGB-
colored texture map showing the insolation distribution on the 3D surface.

(6) The texture map is bound to the triangle vertices via texture coordinates for
interactive visualization using the GPU.

4.2. The underlying GIS solar radiation model

The r.sun model in GRASS GIS was developed on the basis of the European Solar
Radiation Atlas (ESRA) (Rigollier et al. 2000). To derive the global radiation, three
components are taken into account in the model (Hofierka and Suri 2002), namely, the
beam radiation, the diffuse radiation, and the reflective radiation. The beam radiation is the
portion of the solar radiation that penetrates the atmosphere and passes directly to the

Figure 4. Computational and visualization pipeline.
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receiving surface and is the primary source of the received solar energy. The diffuse
radiation is the portion that is scattered from the atmosphere toward the receiving surface
and is the second most important component. In the r.sun model, the reflective component is
the portion that is reflected back from the ground and is the least significant component. In
urban environments, multiple reflections between building surfaces also contribute to the
reflective component. However, because of the lack of data on building surface reflectance,
we do not consider multiple reflections in the calculations of the reflective component.

Information on the following variables are required by the r.sun model, and some of
this information has to be derived at the model input preparation stage:

(1) Geographic coordinates (longitude, latitude, and elevation). Because a city usually
covers a relatively small geographic area, we designated a shared geographic
coordinate for calculation.

(2) Slope and aspect. The surface gradient is already implicitly contained in the
normal vector for 3D triangular planes. Considering the model-space orientation
of the virtual city (Figure 2), the slope of a triangular plane is defined by the
following formula:

slope ¼ arccos dot Vn X ; Y ; Zð Þ;V 0; 0; 1ð Þð Þ½ � (1)

where Vn refers to the normal vector, dot is the dot product. In GRASS GIS,
aspect represents the number of degrees counterclockwise from east; thus, it can
be calculated with the following formula:

aspect ¼ arccos dot Vn X ; Yð Þ;V 1; 0ð Þð Þ½ � (2)

(3) Shadow mask. For each time step, a Boolean shadow mask has to be calculated for
each raster cell. The r.sun solar model describes the solar position by a zenith angle
and an azimuth angle using the horizontal coordinate system. However, the urban
models adopt a 3D Cartesian coordinate system that describe a 3D position or
vector using a triple set (X, Y, Z). Thus, a 3D Cartesian vector needs to be derived
from the zenith and azimuth angle to construct the solar vector. Because the true
north of the 3D model scenes correspond to the Y-axis (0,1,0) (Figure 2), the
model-space solar vector can be obtained by rotating the 3D vector (0,1,0) about
the vector (0,0,–1) by an amount equal to the azimuth angle and then rotating the
resulting vector about the vector (1,0,0) by an amount equal to the zenith angle.

4.3. 3D–2D surface mapping

A 2D raster herein takes the form of a two-dimensional image. The process of projecting a
3D polygon mesh onto a 2D image is known as UV mapping or UV unwrapping. UV
mapping is used in computer-aided design (CAD) to unwrap 3D polygon meshes onto 2D
texture maps, which is an essential step in ‘texture baking’. The least squares conformal
mapping (LSCM) method (Levy et al. 2002) is one of the classic UV mapping methods
and has been incorporated into many 3D modeling software packages for ‘baking
textures’. Software toolkits such as Blender, 3ds Max, and Maya require many user
interactions to unwrap even a single triangular mesh. To automatically process thousands
of triangular meshes, three approaches can be considered:
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(1) Incorporating the open-source library OpenNL that contains an LSCM
implementation.

(2) Writing a script in Blender, 3ds Max, or Maya to batch UV unwrapping.
(3) Developing a case-specific UV unwrapping algorithm that accommodates only

certain particular geometric shapes.

In this study, we developed a simple UV unwrapping algorithm to maximize texture space
usage under the assumption that a building can be represented by two triangular meshes
describing its facades and its roof, respectively. The algorithm projects the facades onto a
vertically aligned plane (perpendicular to the ground) and projects the roof onto a
horizontally aligned plane (parallel to the ground) according to the following steps
(Figure 5):

(1) Determine the spatial extent (width and height in meters) of the 2D raster. For the
roof, the extent can be the axis-aligned geographic bounding box or an arbitrarily
aligned minimum bounding box. For the walls, the width is the circumference of
the original 2D building footprint, and the height is the extrusion height.

(2) Determine a reasonable cell resolution to balance accuracy with efficiency.
(3) Create two separate raster surfaces for the roofs and the walls based on the

specified spatial extent and cell resolution.

Figure 5. Transformation from a 3D model to an image space.
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(4) Generate texture coordinates for the triangle vertices of the roof and the walls.
First, the four corners of the raster extent are assigned the texture coordinates
(0,0), (0,1), (1,0), and (1,1), respectively. The texture coordinates for each triangle
vertex are then calculated by linear interpolation using the corner points.

The UV mapping algorithm, presented in this study, has many limitations and does not
consider arbitrary 3D triangular meshes. For example, a nearly vertical roof facet will be
poorly represented in the 2D raster because a roof is treated as a 2.5D mesh. However, we
illustrate in Figure 6 how the buildings with typical roofs can be unwrapped using a CAD
software that implements a generalized UV mapping algorithm.

4.4. Geometry rasterization

Geometry rasterization is the process of discretizing a 3D triangular mesh into a set of
raster cells (Figure 3) based on predetermined per-vertex texture coordinates. At this
stage, each triangle vertex of the 3D triangular meshes is assigned a unique texture
coordinate on the associated 2D raster surface. A triangle is geometrically described by
three vertex positions and a normal vector. The barycentric coordinate system (Bradley
2007) can be set up to obtain the weights to linearly interpolate the geometric attributes of
a raster cell using the three triangle vertices (Figure 7).

The left half of Figure 7 shows that the given triangle is located on the 3D triangular
mesh by its three vertex positions, P1ðX ; Y ; ZÞ, P2ðX ; Y ; ZÞ, and P3ðX ; Y ; ZÞ. The right
half of Figure 7 shows that the triangle’s 2D counterpart on the raster surface is
represented by the three texture coordinates, T1ðU ;V Þ, T2ðU ;V Þ and T3ðU ;V Þ, which
are used to construct the barycentric coordinate triple BaðX ; Y ; ZÞ(Bradley 2007). Given a
raster cell within the triangle with the texture coordinate TðU ;V Þ, the position and normal
vector can be interpolated using the following formula:

P X ; Y ; Zð Þ ¼ Ba Xð Þ � P1 þ Ba Yð Þ � P2 þ Ba Zð Þ � P3 ð3Þ
N X ; Y ; Zð Þ ¼ Ba Xð Þ � N1 þ Ba Yð Þ � N2 þ Ba Zð Þ � N3 ð4Þ

�

where P(X,Y,Z) and NðX ; Y ; ZÞ refer to the interpolated position and normal vector of the
raster cell, respectively.

Figure 6. UV mapping for building models with various types of roofs.
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4.5. Efficient shadow-casting algorithm

The basic shadow-casting algorithm is simple: a ray is constructed from the solar direction
to find out whether the path from the sun to the destination is obstructed or not; to exclude
the possibility of the ray being occluded, we have to traverse all the triangles in the scene
to perform intersection tests. Because of the sheer volume of the geometric data in a 3D
virtual city, brute-force shadow-casting can be an extremely computationally intensive and
time-consuming process. For example, if a 3D virtual city consists of 1 million triangles, 1
million ray-triangle intersection tests need to be performed to determine the shadowing
effect for even a single raster cell in the worst-case scenario.

We present an efficient shadow-casting algorithm by employing two strategies: first,
we reduce the number of triangles that need to be traversed for intersection tests, and
second, we use the GPU to parallelize the shadow-casting calculation on a cell-by-cell
basis. The shadow-casting algorithm is implemented as follows:

(1) Bounding box calculation. As a preprocessing step, an axis-aligned 3D bounding
box is calculated for each triangular mesh of the virtual city.

(2) Shadow-radius-based culling. Because the horizontal scale of a city is signifi-
cantly greater than its vertical scale, we assume that the shadow projected by most
shadow-casters in the scene may not be sufficiently long to cover the targeted
shadow-receiving triangular mesh. Assuming that the highest point of a shadow-
caster is defined by a 3D coordinate PhðX ; Y ; ZÞ and that the solar vector is given
by a normalized 3D vector VlightðX ; Y ; ZÞ, the maximum shadow length Lshadow
can be estimated using the following formula (Figure 8):

Lshadow ¼ Ph Zð Þ=arcsin Vlight Zð Þ� �
(5)

Figure 7. Triangle rasterization based on weighted interpolation.
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(3) View-frustum-based culling. For a targeted shadow-receiving triangular mesh, an
orthographic view frustum is set up based on the solar vector and the bounding
box of the mesh. The bounding box of each triangular mesh in the scene is
transformed into the solar view space for the frustum-box intersection test. Only
the intersected meshes are selected from the scene for accurate ray-triangle
intersection testing in a further step (Figure 9).

(4) Ray-triangle intersection. A ray is constructed starting from the cell position and
extending in the direction of the solar vector to perform an accurate ray-triangle
intersection test with the remaining triangle meshes. The shadow mask for a raster
cell is marked true if the ray actually hits any triangle.

Figure 8. Shadow-radius-based culling.

Figure 9. View-frustrum-based culling.
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An experiment was performed using the Boston scene to determine how the culling
techniques can contribute to a reduction in the number of intersection tests. Initially, we
chose 11 azimuth angles ranging from 180° to 360° in increments of 18° and a zenith angle
of 45°. The combination of the 11 azimuth angles and the zenith angle created 11 instances
of model-space solar vectors. One in every 10 triangular meshes in the scene was selected to
act as a shadow-receiver. The number of remaining triangles for each solar vector after
culling was averaged over all the shadow-receivers. The results are presented in Table 2.

The statistics shown in Table 2 indicate that the majority of the triangular meshes were
excluded from the actual intersection tests, with an average of 450 triangles or 20 meshes
remaining, equivalent to 10 buildings. This means that only 450 ray-triangle intersection
tests on average were performed for each raster cell for a single time step. Figure 10
illustrates how the techniques actually work.

In conclusion, a combination of shadow-radius- and view-frustum-based culling can
significantly reduce the number of intersection tests required in the shadow-casting process.

Figure 10. Illustration of the culling techniques.

Table 2. Performance of the culling techniques.

Azimuth Zenith
Number of meshes remaining

(out of 44,370)
Number of triangles remaining

(out of 818,377)

180 20 20 441
198 20 20 441
216 20 21 460
234 20 20 447
252 20 20 444
270 20 20 444
288 20 20 450
306 20 20 449
324 20 21 460
342 20 20 447
360 20 20 446
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However, we found that it was still overly time-consuming to calculate a shadow mask
for each raster cell for all the triangular meshes in the virtual city. Therefore, we decided
to parallelize the shadow-casting algorithm using the NVIDIA Compute Unified Device
Architecture (CUDA). The geometric information for each triangular mesh, such as the
spatial bounding box, the vertex positions, and the normal vectors, is stored in the CUDA
global memory. For each cell in a raster surface, a CUDA thread is issued to perform the
ray-casting calculation (Figure 11), during which the global memory is accessed to fetch
the geometric data concerning the potential shadow-casters.

Figure 11. CUDA-based ray-casting implementation.

Figure 12. Accurate shadow-casting results.

792 J. Liang et al.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

R
em

ot
e 

Se
ns

in
g 

A
pp

lic
at

io
n]

 a
t 0

1:
11

 2
7 

Ju
ne

 2
01

4 



The GPU implementation presented herein was compared with the CPU implementa-
tion of the same shadow-casting algorithm. A small scene consisting of 11 meshes and
827 triangles was used to test the algorithm. The 11 texture maps bound to the meshes
amounted to 3.67 million pixels, suggesting that 3.67 million rays needed to be cast for a
single solar vector.

At first, the culling techniques were applied for both the GPU and the CPU
implementations. The GPU implementation reported a computation time of less than
1 second, while the CPU counterpart reported a computation time of 8 seconds,
suggesting a speedup factor of at least 8. However, the observed GPU running time
increased to 1.5 seconds when culling was disabled in a later test, suggesting the
significance of the culling techniques even for such a small amount of geometric data.
The tests generated very accurate, view-independent, and aliasing-free shadow maps, as
shown in Figure 12.

5. Discussion and conclusions

The tests described above and in this section were run on a machine with a 2.90-GHz
quad-core Intel Core i52310 CPU with 4 GB of RAM. The graphics card is an NVIDIA
GeForce GTS 450 with 1.0 GB RAM. The proposed computational framework was
implemented using C++, CUDA, and OpenSceneGraph.

The date selected for calculation was January 1. The proposed method and computa-
tional framework were employed to assess the potential solar irradiance for the 22,185
buildings for time intervals of 1 hour and a raster resolution of 1 m. The time required to
calculate the irradiance values was approximately 36 minutes, and another 5 minutes of
computation time were required for symbolizing the raster cells in texture maps. The
computation time encompassed the full time elapsed from file input through result output.
Because each building was split into two parts, that is, the roof and the walls, 44,370
texture maps were generated for the 22,185 buildings, amounting to a total surface area of
31.39 million m2.

5.1. Interactive visualization techniques

The output raster layers were symbolized using custom color ramps and rendered to RGB
texture maps, which were bound to the associated triangular meshes for texture mapping
in GPU-based real-time rendering.

At first, a brute-force approach was employed to load the 44,370 triangular meshes
and texture maps directly into the GPU for real-time rendering. The application came to a
standstill as soon as the rendering loop began and crashed before any images were
generated. We then performed GPU–CPU runtime profiling to determine the possible
causes of the program failure. In principle, GPU-based real-time rendering can be con-
strained by many potential bottlenecks, such as geometric complexity, video memory
consumption, and frequent API draw calls (NVIDIA 2008). We identified frequent API
draw calls as the major bottleneck, after geometric complexity and video memory issues
were ruled out. Because an individual draw call is required by each texture map, 44,370
API draw calls need to be issued to generate a single frame. Because each API draw call
requires a certain amount of GPU and CPU overhead, the application could be extremely
inefficient in executing actual rendering tasks.

Having determined the GPU bottleneck, we decided to employ a texture atlas to
improve the rendering performance by batching the draw calls (NVIDIA 2004). A texture
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atlas is a large image containing a group of sub-images, each of which corresponds to the
texture of a 3D triangular mesh, that is, the roof or walls of a building. In this study, a
texture atlas was generated as follows:

(1) Sorting the original texture maps in ascending order by image height.
(2) Allocating an atlas image with a given width, for example, 2048 pixels, and an

initial height that may be adjusted later.
(3) Drawing the sorted original images onto the atlas image row by row, keeping

track of the position offset. A new atlas image is created if the current position
exceeds a given image height limit, for example, 2048 pixels.

(4) Remapping the atlas images onto the original 3D triangular meshes by transform-
ing the texture coordinates on the basis of the relative positioning of the sub-
images on the corresponding atlas image.

In Figure 13, a collection of 84 images belonging to 42 buildings were merged into a
single texture atlas, which was remapped onto the original building meshes for rendering
with a single draw call.

In summary, the 44,370 textures were combined into 23 atlas images, each of which
ranged from 1024-by-1024 to 2048-by-2048 pixels in size. The improvement in the
rendering performance was significant, as suggested by a frame rate of over 200, indicat-
ing the benefit of the batched draw calls.

Figure 13. Texture atlas creation and visualization.

794 J. Liang et al.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

R
em

ot
e 

Se
ns

in
g 

A
pp

lic
at

io
n]

 a
t 0

1:
11

 2
7 

Ju
ne

 2
01

4 



5.2. General applicability of the proposed method

The calculation results indicate that the distribution of urban irradiance is mainly affected
by two factors: surface orientation and shading. Because the sun is to the south most of
the time during the winter, south-facing walls are more favorable to insolation because an
equal amount of solar energy falls on a much smaller area. The top view (Figure 14)
suggests lower irradiance levels for the building roofs, especially for those that are shaded
by the surrounding buildings. The roofs display a relatively uniform irradiance pattern due
to the lack of roof orientation information. The south view (Figure 15) reveals many high-

Figure 14. Top view of the solar irradiance distribution in Boston.

Figure 15. South view of the solar irradiance distribution in Boston.
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insolation facades marked in yellow to red tones. In contrast, the north-facing facades
(Figure 16) exhibit very low irradiance levels in green tones. The north-facing facades are
also mostly shaded because the sun is always to the south in the winter. The buildings that
lie north of taller buildings are likely to receive far less solar radiation, especially during
the winter, when buildings cast longer shadows. These complicated shading effects can be
clearly observed in the south-view map (Figure 15).

5.3. Efficiency and further improvement

The improved efficiency of the proposed method is primarily reflected in two aspects,
namely, visualization and computation.

The GPU cannot normally support real-time rendering of over 5000 textured buildings
without the texture atlas technique herein presented, which enables batched drawing.
If the amount of surface properties grows too large to fit in video memory, the images
can be compressed using the DXT1 algorithm with a fixed compression ratio of 8:1.
Further optimization is possible if a view-dependent data streaming strategy is implemen-
ted with cached image pyramids.

The computation efficiency mainly depends on the shadow-casting algorithm and the
r.sun model. The CPU-based implementation of both the shadow-casting algorithm and
the r.sun model revealed that most of the computation time was spent on shadow-casting
calculations owing to the geometric complexity. To address this issue, we resorted to a
GPU-based shadow-casting implementation, which accelerated the computation by a
factor of at least 8. Minimizing the number of ray-triangle intersection tests is key to
improving the shadow-casting algorithm. It should be noted that about 450 intersection
tests are needed for each ray using the algorithm presented in this study. Thus, there is still
ample room for improvement. For instance, the computation efficiency can be expected to

Figure 16. North view of the solar irradiance distribution in Boston.
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increase tenfold if the number of intersection tests for each ray is to be reduced to 45.
Potential techniques for further improvement include the following:

(1) Resorting to hierarchical spatial partitioning structures, for example, kdtree and
octree (Crassin 2011), to minimize the number of ray-triangle intersection tests.
Implementation of such an irregular spatial partitioning structure on the GPU can
be more challenging.

(2) Using real-time shadowing algorithms, including shadow mapping and shadow
volume (Scherzer et al. 2011, Kolivand and Sunar 2013), which probably require
much less computational cost than the approach developed in the present study.
However, both algorithms are dedicated to view-dependent interactive applica-
tions and thus further investigation will be needed to validate their accuracy.

Although the proposed method achieves efficient data representation and interactive
visualization, voxel-based data representation still offers many advantages that cannot
be emulated by the proposed method. For example, the shadow-casting implemented in a
voxel-based data model is insensitive to geometric complexity. However, a regularly
partitioned voxel model is also inefficient at storing 3D geometric properties and calcula-
tion results because there are many void spaces inside the 3D building structures. The
sparse voxel octree (Laine and Karras 2010) may be more efficient at representing 3D
geometric surfaces, given its highly compact storage. Nevertheless, many problems
remain to be solved if the sparse voxel octree is to be incorporated in a GIS-based
framework in a manner suitable to practical applications. Finally, if building surface
reflectance can be retrieved using certain remote sensing techniques, it can be very
interesting to study building inter-reflections and their effects on the solar radiation
regimes in urban environments.
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