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Abstract: Although a large number of new image classification algorithms have been 

developed, they are rarely tested with the same classification task. In this research, with  

the same Landsat Thematic Mapper (TM) data set and the same classification scheme  

over Guangzhou City, China, we tested two unsupervised and 13 supervised classification 

algorithms, including a number of machine learning algorithms that became popular in 

remote sensing during the past 20 years. Our analysis focused primarily on the spectral 

information provided by the TM data. We assessed all algorithms in a per-pixel 

classification decision experiment and all supervised algorithms in a segment-based 

experiment. We found that when sufficiently representative training samples were used, 

most algorithms performed reasonably well. Lack of training samples led to greater 

classification accuracy discrepancies than classification algorithms themselves. Some 

algorithms were more tolerable to insufficient (less representative) training samples than 
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others. Many algorithms improved the overall accuracy marginally with per-segment 

decision making. 

Keywords: machine learning; maximum likelihood classification; logistic regression; 

support vector machine; tree classifiers; random forests 

 

1. Introduction 

Since the launch of the first land observation satellite, Earth Resource Technology Satellite (later 

changed to Landsat-1) in 1972, substantial improvements have been made in sensor technologies. The 

spatial resolution has increased over 100 times, from the 80 m of the Landsat-1 to 0.41 m of the 

GeoEye-1 (Orbview-5) satellite. The spectral sampling frequency has increased nearly 100 times, from 

a few spectral bands to a few hundred spectral bands. Classification of land cover and land use types 

has been one of the most widely adopted applications of satellite data. Although a large number of 

algorithms have been developed and applied to map land cover from satellite imagery, and new 

algorithm proposers have reported improvements in accuracies of their mapping experiments (see [1] 

for a substantial review on classification algorithms), it is difficult to find a systematic comparison on 

the performance of newly proposed algorithms. This is particularly true for machine learning 

algorithms, as many of them have been introduced to the field of remote sensing for less than 10 years. 

Instead, classifier performance comparison has only been limited to the comparison of a new algorithm 

with a conventional classifier like the maximum likelihood classifier [2–4], or the comparison among a 

small number of two to three new algorithms [5]. Through meta-analysis of a large number of 

published literatures on land cover and land use mapping, Wilkinson [6] found that accuracy 

improvement of land cover and land use mapping by new algorithms are hardly observable. However, 

this kind of analysis compares classification accuracies in different literature reporting applications 

over different study areas and/or with different types of satellite data. 

As the number of machine learning algorithms increases, it is beneficial for the user community of 

machine learning algorithms to gain a better knowledge on the performances of each algorithm. In the 

field of remote sensing image classification, a more comprehensive comparison of major machine 

learning algorithms is needed. This must be done with the same land cover and land use classification 

scheme and the same satellite image. It is generally believed that final image classification results are 

dependent of a number of factors: classification scheme, image data available, training sample 

selection, pre-processing of the data including feature selection and extraction, classification algorithm, 

post processing techniques, test sample collection, and validation methods [7]. The purpose of this 

research is to compare performances of 15 classification algorithms when applied to the same set of 

Landsat Thematic Mapper (TM) image acquired over Guangzhou City, China, while keeping the other 

factors the same. The urban area of Guangzhou has been selected for this purpose as it includes 

relatively complex land cover and land use patterns that are suitable for classification algorithm 

comparison. In addition to applying the algorithms on a pixel-by-pixel basis, we also tested the 

algorithms on a per-segment basis to compare the effect of including the object-based image analysis 

as a preprocessing step in the image classification process. 
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2. Study Site and Data 

Our study site is located in the north of the Pearl River Delta (23°2'–23°25'N, 113°8'–113°35'E). As 

the capital city of Guangdong, Guangzhou is one of the fastest growing cities in China. It contains the 

core part of Guangzhou Municipality, and its rural-urban fringe (Figure 1). It can be divided into three 

regions: forest in the northeast, farmland in the northwest, and settlement in the south. As Guangzhou 

has been among the first group of cities that have undergone rapid development for over 20 years, 

it has been studied extensively for land use and land cover mapping and change detection (e.g., [8–10]). 

Figure 1. The study area. The image displays the green, red and near infrared band of the 

TM data with blue, green, and red color guns. 

 

The Landsat Thematic Mapper (TM) image used here was acquired on 2 January 2009, in the dry 

season of this subtropical area. For classification on a single date image, there is no need to do 

atmospheric correction if the sky is clear, which is the case in this study [7,11]. Geometric correction 

was applied to the raw imagery by co-registering this image with a previously georeferenced TM 

image acquired in 2005. A total of 153 ground control points were selected from the image. A second 

order polynomial resulted in the root mean squared error of 0.44 pixels. The original image was 

radiometrically resampled with a cubic convolution algorithm (for classification purposes nearest 

neighbor or bilinear resampling would work as well). Due to its coarser resolution, we experimented 

with a 6-band set of the TM data by excluding the thermal band. In order to estimate the potential of 

satellite data of similar resolution but with only visible and near-infrared bands (e.g., the 32 m 

resolution multispectral camera on board the Disaster Monitoring Constellation satellites, the 30 m 

multispectral sensor on board China’s Huanjing-1A satellite), we also experimented with a 4-band set 

of the TM data by further excluding the two middle infrared bands. 

At the time of image acquisition, some fruit trees (such as Litchi) and several vegetables were in 

their blooming stage and some fruit trees (such as citrus) were in fruit-bearing stage. The elevation is 
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high in the northeast mountains and low in the southwest farmlands. Newly developed industrial areas 

are in the southeast. 

3. Method 

3.1. Classification System 

The land cover and land use classification system was developed to reflect the major land types in 

this area with reference to Gong and Howarth [2,12], and Gong et al. [13] Their meanings are  

self-explanatory (Table 1). On this basis, totally there were 14 subclasses for training, which were 

divided according to the spectral characteristics [2]. For example, the Industrial/commercial was 

subdivided into 4 types due to the spectral differences by different roofing materials. 

Table 1. Land use classification system. 

Land-Use Types Description 

Water Water bodies such as reservoirs, ponds and river 

Residential area Residential areas where driveways and roof tops dominate 

Natural forest Large area of trees 

Orchard Large area of fruit trees planted 

Farmland Fields where vegetables or crops grow  

Industrial/commercial Lands where roof tops of large buildings dominate  

Cleared land/Land under 

construction 
Lands where vegetation is denuded or where the construction is underway 

Idle land Lands where no vigorous vegetation grows 

3.2. Training Samples 

Training samples are primarily collected on a per-pixel basis to reduce redundancy and  

spatial-autocorrelation [7]. They were selected through image interpretation with intensive field visits 

over this area. Although more training samples are usually beneficial, as they tend to be more 

representative to the class population, a small number of training samples is obviously attractive for 

logistic reasons [14]. It is often recommended that a training sample size for each class should not be 

fewer than 10–30 times the number of bands [15–17]. This is usually okay for classifiers that require 

few parameters to be estimated like the maximum likelihood classifier when applied to a handful 

number of bands. With many classification algorithms, no previous study has reported an optimal 

number of training samples. To test the sensitivity of an algorithm to the size of training samples, we 

selected training samples uniformly from the images to make sure each subclass has 240 samples for 

later experiments. We sampled the training data to construct 12 sets of training samples with 20, 40, 60, 

80, 100, 120, 140, 160, 180, 200, 220, and 240 pixels. For object-based method, we selected the 

segments contained the training pixels (240 pixels per subclass) as training objects. 
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3.3. Test Samples 

We separately collected 500 pixels as test data, 138 of which were from field visits (done in April 

and December 2009, and June 2010), and the remaining were selected according to prior knowledge. 

The size of test sample for each land class was greater than 40 pixels (Figure 2). We used Kappa 

coefficient as the evaluation criterion [18]. 

Figure 2. The distribution of test samples. 

 

3.4. Classification Process 

We tested 15 algorithms [19–33] all from easily accessible sources [34–37]. These algorithms are 

selected because they are openly accessible and easy to use. As the number of algorithms is large, and 

they are clearly documented elsewhere, sources of references on the codes and documentation of the 

algorithms are provided in Table 2. Most algorithms require certain parameterizations. While the 

choice of optimal parameter set is desirable, it is extremely difficult to do so even with the original 

algorithm developer as the application conditions vary so widely from one environment to another and 

from one data type to another. However, it is generally safe to adopt the recommended range by the 

algorithm developers. In practice this is usually what has been done. Therefore, we designed 

experiments to cover a majority of parameter combinations for each algorithm (Table 2) while adopting 

the parameter ranges as recommended in the original sources of references. These algorithms were tested 

using both pixel-based and segment-based methods. For the two unsupervised classifiers, the Iterative 

Self-Organizing Data Analysis Technique (ISODATA) is a popular advanced clustering algorithm [19] 

while the Clustering based on Eigenspace Transformation (CBEST) is an efficient k-means algorithm [20]. 
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The clusters obtained were grouped into informational classes by the same analyst who did the 

selection of training and test samples. It is assumed that the analyst is most familiar with the study area 

given sufficient field visits and consulting with local experts. 

For segment extraction, we used BerkeleyImageSeg (http://berkenviro.com/berkeleyimgseg/) to 

perform image segmentations and then classified the segments by each algorithm. For the segmentation, 

the threshold is the most important parameter, which determines the size of the objects [38]. Here, four 

threshold values {5, 10, 15, 20} were examined. The shape parameter and compactness parameter 

were set to 0.2 and 0.7, respectively. The statistical spectral properties of the segments were then used 

in the segment-based classification. The features [39] are listed in Table 3. There are a total of 24 

features. The parameters used for this method are selected according to the empirical values from the  

pixel-based classification, and taking the number of features used into consideration.  

Table 2. Algorithm parameter set up and source of codes. 

Algorithm Abbreviation Parameter Type Parameter Set Source of Codes 

ISODATA ISODATA 
Number of Clusters 

Maximum Iterations 

100, 150 

100 
ENVI  

CBEST CBEST 
Number of Clusters 

Maximum Iterations 

100, 150 

100 
CBEST  

Maximum- 

likelihood 

classification 

MLC 
Mean and covariance 

matrix 
Estimated from training samples openCV  

K-nearest 

neighbor  
KNN 

K 

weight 

1,3,5,7,9,11 

No weighting, 1/distance 
Weka  

Logistic 

regression  
LR Ridge estimator 

0, 10
−1

, 10
−2

, 10
−3

, 10
−4

,  

10
−5

, 10
−6

, 10
−7

, 10
−8

 
Weka  

C4.5  C4.5 
MinNumObj 

Confidence 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

0.05f, 0.1f, 0.2f, 0.3f, 0.4f, 0.5f 
Weka  

Classification 

and Regression 

Tree  

CART MinNumObj 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Weka  

Quick, Unbiased, 

Efficient, and 

Statistical Tree 

algorithm  

QUEST 
Split types 

MinNumObj 

univariate, linear 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
QUEST  

Random Forests  RF 

numFeature 

 

numTrees 

For 6-bands: 1,2,3,4,5,6 

For 4-bands: 1,2,3,4 

20, 40, 60, 80, 100,  

120, 140, 160, 180, 200 

Weka  

Support 

Vector 

Machine  

SVM 

kernelType 

Cost 

 

gamma 

 

radial basis function 

10, 20, 30, 40, 50, 60, 

70, 80, 90, 100 

2
−2

, 2
−1

, 1, 2
1
, 2

2
,  

2
3
, 2

4
, 2

5
, 2

6
, 2

7
 

Libsvm  

  



Remote Sens. 2014, 6 970 

 

 

Table 2. Cont.  

Algorithm Abbreviation Parameter Type Parameter Set Source of Codes 

Radial Basis 

Function 

Network  

RBFN 

MaxIteration 

NumCluster 

minStdDev 

500, 1,000, 3,000, 5,000, 7,000 

2, 3, 4, 5, 6, 7, 8, 9 

0, 0.01, 0.05, 0.1 

Weka  

Logistic model 

tree 
LMT 

minNumInstances 

weightTrimBeta 

splitOnResiduals 

5, 10, 15, 20, 25, 30 

0, 0.01, 0.05, 0.1 

False (C4.5 splitting criterion), 

True (LMT criterion) 

Weka  

Bagging C4.5 B_C4.5 

bagSizePercent 

numIterations 

classifier  

20, 40, 60, 80, 100 

10, 50, 100, 150, 200 

C4.5 

Weka  

AdaBoost C4.5 AB_C4.5 

weightThreshold 

numIterations 

classifier 

40, 60, 80, 100 

10, 20, 30, 40, 50, 60, 70 

C4.5 

Weka  

Stochastic 

gradient boosting  
SGB 

n.trees 

shrinkage 

bag.fraction 

500, 1000 

0.05, 0.1 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

R  

Table 3. The features used in the objected-based classification method. 

Feature 

Maximum value of the segments for each spectral band (6 bands) 

Mean or average values of the segments for each spectral band (6 bands) 

Minimum values of the segments for each spectral band (6 bands) 

The standard deviations of the pixels in the segments for each spectral band (6 bands) 

3.5. Active Learning 

Active learning is an algorithm for selecting effective training samples. This kind of algorithms adds 

unlabeled samples as training samples from the sample pool through human-machine interaction [40]. 

In this research, we used a margin-sampling algorithm [41,42], which takes advantage of SVM. It 

selected candidate samples lying within the margin of the model, and these samples are most 

conducive to the improvement of the classifier’s performance. At the beginning, we randomly selected 

20 samples for each class, and added 10 samples from the training set using margin sampling at a time. 

The best parameters of SVM are selected using simple grid search. 

4. Results 

4.1. Pixel-Based Classification 

Table 4 shows the best pixel-based classification accuracies of the algorithms. For the two 

unsupervised algorithms, they could produce as good results as some of the supervised algorithms 

when we cluster 150 spectral clusters. This is usually a very large number of clusters for an image 

analyst. Thus, we did not experiment for more clusters. Most supervised algorithms produce 

satisfactory results when the training samples are sufficient (more than 200 samples per class). 
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However, MLC only requires 60 pixels to reach its highest accuracy. This indicates the high level of 

robustness and capability of generalization. 

Table 4. Best classification accuracy for each algorithm using pixel-based approach. 

Algorithm Parameter Choice Accuracy 

ISODATA 
6-Band, Number of Clusters = 150 

4-Band, Number of Clusters = 150 

0.864 

0.841 

CBEST 
6-Band, Number of Clusters = 150 

4-Band, Number of Clusters = 150 

0.850 

0.846 

MLC 
6-Band, 60 training samples 

4-Band, 60 training samples 

0.892 

0.873 

KNN 
6-Band, 240 training samples, K = 3, weight = 1/distance 

4-Band, 240 training samples, K = 3, weight = 1/distance 

0.855 

0.823 

LR 
6-Band, 220 training samples, Ridge estimator = 10

−8
 

4-Band, 200 training samples, Ridge estimator = 10
−8

 

0.899 

0.862 

C4.5 
6-Band, 220 training samples, MinNumObj = 7, confidence = 0.2f 

4-Band, 240 training samples, MinNumObj = 3, confidence = 0.5f 

0.866 

0.841 

CART 
6-Band, 240 training samples, MinNumObj = 1 

4-Band, 220 training samples, MinNumObj = 2 

0.857 

0.818 

QUEST 
6-Band, 100 training samples, split type = linear, MinNumObj = 8/9/10 

4-Band, 180 training samples, split type = linear, MinNumObj = 1-10 

0.875 

0.843 

RF 
6-Band, 240 training samples, numFeatures = 1, numTrees = 20 

4-Band, 200 training samples, numFeatures = 1, numTrees = 60 

0.873 

0.848 

SVM 
6-Band, 240 training samples, kernelType = radial basis function, C = 80, gamma = 2

3
 

4-Band, 240 training samples, kernelType = radial basis function, C = 50, gamma = 2
4
 

0.885 

0.855 

RBFN 

6-Band, 220 training samples, minStdDev = 0.01, NumCluster = 9, MaxIts = 1,000 

4-Band, 240 training samples, minStdDev = 0.01, NumCluster = 8, MaxIts = 

3,000/5,000 

0.887 

0.859 

LMT 

6-Band, 160 training samples, weightTrimBeta = 0, splitOnResiduals = C4.5 splitting 

criterion, minNumInstances ≥ 5 

4-Band, 200 training samples, weightTrimBeta = 0.1, splitOnResiduals = LMT splitting 

criterion, minNumInstances ≥ 5 

0.885 

0.862 

B_C4.5 

6-Band, 240 training samples, bagSizePercent = 80, numIterations = 100 

C4.5parameter (MinNumObj = 2, confidence = 0.3f) 

4-Band, 240 training samples, bagSizePercent = 60, numIterations = 10 

C4.5parameter (MinNumObj = 1, confidence = 0.2f) 

0.862 

0.836 

AB_C4.5 

6-Band, 220 training samples, weightThreshold = 40, numIterations ≥ 10, 

C4.5parameter (MinNumObj = 7, confidence = 0.2f) 

4-Band, 240 training samples, weightThreshold = 40, numIterations ≥ 10, 

C4.5parameter (MinNumObj = 5, confidence = 0.3f) 

0.866 

0.841 

SGB 
6-Band, 240 training samples, bag.fraction = 0.2, shrinkage = 0.1, n.tree = 1,000 

4-Band, 220 training samples, bag.fraction = 0.2, shrinkage = 0.1, n.tree = 1,000 

0.869 

0.852 

A small value of K (K = 3) for KNN is the better choice in this study, and the distance-based 

weighting improves the KNN results. For the simple classification tree algorithms (CART, C4.5, and 

QUEST), minNumObj means minimum number of samples at a leaf node, which determines when to 
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stop tree growing. All the three simple tree algorithms achieve high accuracies when this value is less  

than 10. In other words, they all grow big trees and then prune them. However, the LMT needs a large 

minNumInstances to build the tree. For RF, numFeatures means the number of features to be randomly 

selected at each node and numTrees means number of trees generated. Usually, the suggested value of 

numFeatures is   , where N is the number of features [43]. However, in this research, we find a value 

smaller than    is more suitable. For SVM, we used radial basis function (RBF) kernel, the space 

affected by each support vector is reduced as the kernel parameter gamma increases. A slightly large 

gamma (2
3
, 2

4
) is the best choice for this research, which means more support vectors are used to 

divide the feature space. MinStdDev in RBFN is the minimum number of standard deviations for the 

clusters, controlling the width of Gaussian kernel function as gamma in SVM. numCluster is the 

number of clusters, determining the data centers of the hidden nodes. In this research, we found the 

numCluster equal to or slightly greater than the number of classes is a better choice. BagSizePercent in 

Bagging controls the percentage of training samples randomly sampled from the training sets with 

replacement. The results show that 60%–80% of the training set achieved better results. It is similar to 

weightThreshold in Adaboost, but the latter one resamples the training set according to the weight of 

the last iteration. It achieves good classification results using only 10 iterations. For SGB, bag.fraction 

controls the fraction of training set randomly selected without replacement. The best value of the 

sampling fraction is 0.2. This reduces the correlations between models at each iteration. The best 

shrinkage value, which is the learning rate is 0.1.  

From Table 4 we can see that the best classification accuracy for the 6-band case is achieved by 

logistic regression, followed closely by the maximum likelihood classifier, neural network, support 

vector machine, and logistic model tree algorithms. Opposite to this, the CBEST and KNN produced 

the lowest accuracies. The range of Kappa coefficient from the lowest to the highest is 0.049. For the 

4-band case, in general, there is a 0.02 to 0.04 difference in Kappa for each algorithm, confirming the 

fact that with fewer spectral bands there is indeed accuracy loss. However, in this experiment, the 

accuracy drop is quite small implying that the inclusion of the two middle infrared bands of the TM 

would not add a lot of power in separability to the classification of our classes. The maximum 

likelihood classifier produced the highest accuracy of 0.873 for the 4-band case, only 0.026 inferior to 

the highest accuracy with the 6-band case. The accuracy range for the 4-band case is between 0.818 

and 0.873. 

4.2. Objected-Oriented Classification 

Table 5 shows the best classification accuracies using objected-oriented method. The results of this 

kind of classification are largely depending on the segmentation [44]. The classification accuracies are 

the highest when the segmentation scale is set to 5 (the smallest). The best performer is SGB with an 

accuracy improvement of 0.025 over the best pixel-based classification results. This is followed 

closely by RF. The accuracies decrease with the increase of the threshold. A higher threshold produces 

larger objects. For the TM image, which is 30 m in resolution, fragmentation is relatively high in this 

urban area. High threshold brings more mixed information in the segments under this classification 

system. As small segments are relatively homogeneous, the classifiers utilizing statistical properties of 

the segments rather than individual pixel values improved the results. 

app:ds:gaussian
app:ds:kernel
app:ds:function
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Comparing Table 5 with Table 4, we can see all results are improved based on objected-oriented 

approach using spectral features only. Among them, SGB produced the best results, followed by RF, 

C4.5, LMT, LR, and MLC. From another perspective, these algorithms could deal with  

high-dimensional data. 

Table 5. Best classification accuracy for each algorithm using objected-oriented approach. 

 OB_5 

MLC 0.898 

KNN 0.871 

LR 0.901 

C4.5 0.912 

CART 0.864 

QUEST 0.882 

RF 0.917 

SVM 0.891 

RBFN 0.894 

LMT 0.908 

B_C4.5 0.896 

AB_C4.5 0.891 

SGB 0.924 

5. Discussions 

5.1. Most Common Errors among the Classifiers 

Figure 3 shows the test pixels of different classes that have been misclassified at least once. The 

clusters of repeatedly misclassified pixels are mainly found in the urban areas. The red circled area is 

the center of Guangzhou, where many residential, forest, commercial buildings, and construction land 

are mixed. The blue circled area is the new urban district, where bare land and industrial park are 

mixed. Most of the algorithms perform poorly in these complex areas given the fact that it is easy to 

have a wider range of spectral characteristics than it would normally have in natural environment 

within the same class. In addition, in the green circled area, there are black greenhouses and iron and 

steel enterprise. They are misclassified as residential area or water. From Figure 4 we can see 

residential area and water; natural forest and orchard; industrial/commercial and cleared land/land 

under construction, residential, water; farmland and idle land are more easily mixed in the 

feature space.  

Tables 6 and 7 show that residential area and water, and residential area and industrial/commercial 

are well distinguished by ISODATA, CBEST, MLC, and LR. RBFN is good at distinguishing forest 

from orchard, while SVM is good at classifying industrial/commercial and cleared land/land under 

construction. LR, SVM, and LMT can better distinguish farmland and idle land.  
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Figure 3. The distribution of misclassified test samples. 

 

Figure 4. The distribution of the test samples in the feature space (principal component 

analysis (PCA) is used to reduce the dimension of data space). 
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Table 6. The number of misclassified pixels by different algorithms.  

Class Water 
Residential 

Area 

Natural 

Forest 
Orchard Farmland 

Industrial/ 

Commercial 

Cleared Land/ 

Land under 

Construction 

Idle 

Land 

ISODATA 1 4 16 7 10 6 14 1 

CBEST 0 7 13 8 12 7 7 11 

MLC 1 5 20 2 6 8 3 2 

LR 0 7 20 0 5 7 4 1 

KNN 0 11 30 2 6 8 5 2 

C4.5 2 10 15 4 8 11 5 3 

CART 0 11 27 2 8 8 3 3 

QUEST 0 14 18 4 5 7 4 2 

RF 0 14 17 4 8 7 3 2 

SVM 0 13 22 1 5 6 2 1 

RBFN 0 10 12 3 7 8 3 6 

LMT 0 8 21 1 4 9 5 2 

B_C4.5 1 11 26 2 8 7 3 2 

AB_C4.5 2 10 15 4 8 11 5 3 

SGB 0 12 21 2 8  9 4 1 

Table 7. The confusion matrix of the best result. 

Class 

Ground Truth (pixels)  

Water 
Residential 

Area 

Natural 

Forest 
Orchard Farmland 

Industrial/ 

Commercial 

Cleared 

Land/ 

Land under 

Construction 

Idle 

land 
Total 

C
la

ss
if

ic
at

io
n

 r
es

u
lt

s 

Water 41 1 0 0 0 0 0 0 42 

Residential area 0 84 0 0 2 2 0 0 88 

Natural forest 0 0 63 0 1 0 0 0 64 

Orchard 0 0 18 48 0 0 0 0 66 

Farmland 0 0 2 0 72 0 0 1 75 

Industrial/ 

commercial 
0 6 0 0 0 64 4 0 74 

Cleared land/ 

Land under 

construction 

0 0 0 0 0 4 40 0 44 

Idle land 0 0 0 0 2 1 0 44 47 

 Total 41 91 83 48 77 71 44 45 500 

5.2. The Comparison of the Algorithms Using Pixel-Based Method 

Figure 5 summarizes classification accuracies from all the parameter combinations listed in Table 2 

and with different-sized training sets. The two unsupervised classifiers are not included as they were 

only tested with two parameter settings. We can see that all algorithms tested in this research could 

achieve high accuracies with sufficient training samples and proper parameters. MLC and Logistic 

regression have superior performances to other algorithms as their accuracy range is narrow and they 
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can be easily set to produce a high accuracy. Another traditional algorithm—K-nearest neighbor does 

not get as high accuracies as these two. From the ranges of the boxes, MLC, LR, and LMT are the 

most stable algorithms among all the algorithms. 

Figure 5. Comparison of the pixel-based supervised classification. 

 

For the tree classifiers, the box ranges are large. They are sensitive to the selection of parameters 

and training samples. C4.5 and CART tested in this research both select only one feature to split on the 

nodes, while QUEST uses a linear combination of features to split classes. The latter divides the 

feature space more reasonably and flexibly when the spectral distribution is complex. RF as an 

advanced tree algorithm uses Bagging algorithm to generate different training sample sets, and 

ensembles the different trees created by these training sets. Shown in the figure, RF is superior to 

Bagging (C4.5) and other simple trees. Compared with Bagging, RF splits the node using features 

randomly selected. This can reduce the correlation between the trees, and then improve the stability of 

the classification results. SVM and RBFN show similar performance in our experiments, but the 

parameters of these two classifiers are difficult to set. In general, users could not get the most out of 

the two algorithms because of the difficulties in parameter setting. 

The Adaboost shows better results than Bagging. It focuses on the wrongly classified samples in the 

previous iteration rather than randomly selected samples. Bagging and Adaboost classifiers are both 

built on different training sample sets. Their maximum accuracies are not higher than that of C4.5 

indicating a larger variability of single tree classifiers like C4.5 but better stability with ensemble 

classifiers through Bagging and Boosting. SGB is another boosting algorithm, and it outperformed 

Adaboost. It fits an additive function to minimize the residuals at each iteration. It relies on the small 

data set randomly selected while Adaboost relies on the incorrectly classified samples. LMT is built on 

different classifiers. The algorithm is a tree classifier and builds logistic regression models at its leaves. 

It takes advantage of the decision tree, building logistic regression at a small and relatively pure space. 
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The training sets have been divided into smaller subclasses according to the spectral characteristics. 

Therefore, LMT does not fully show its advantage. 

5.3. The Impact of Different Training Set Sizes 

Figure 6 shows the impact of training sample sizes on different classifiers. When the number of 

training samples is very small (e.g., 20, 40 samples), no algorithm performs well. The algorithms most 

affected by training sample size are the classification tree algorithms except for RF and Adaboost. 

They need sufficient samples to build the trees. MLC, LR, SVM, and LMT are the least affected 

algorithms. They could produce relative high accuracies using a smaller sized training set, and achieve 

stable results when there are 60 or more samples per class. All the algorithms except for MLC are 

improved in varying degrees by adding training samples. Generally speaking, MLC, LR, SVM, RBFN, 

and LMT could produce good results with small sized sample sets. 

Figure 6. Pixel-based supervised classification with different sizes of training sets. 

 

Active learning algorithm is used to test the representativeness of the training samples. Figure 7 

shows that when the total number of training samples increases to 560–840 (40–60 samples for each 

subclass), about 1/6–1/4 of the entire training set, the classification results are satisfactory. The results 

are relatively stable when the training sample size further increases. In other words, the whole training 

set only contains 1/6–1/4 useful information. On the contrary, we randomly added the training samples 

without any rules, and then the results increased slowly and became stable when the training samples 

were representative enough (at about 2,800 samples, 200 samples for each subclass). That is why most 

of the algorithms achieve their highest accuracies when there are more than 200 samples per class.  

Under such circumstances, using active learning algorithm to select training samples is an efficient 

way to achieving the optimal results before a large amount of trial and error tests. Active learning 

should be applied for representative sample selection to feed subsequent classification algorithms. 

app:lj:%E4%BB%A3%E8%A1%A8%E6%80%A7?ljtype=blng&ljblngcont=0&ljtran=representativeness
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Figure 7. Active learning result and results based on training samples randomly selected. 

 

5.4. Algorithm Performances with Low-Quality Training Samples 

The quality of training samples is reduced with the increase of thresholds in segmentation as 

segment statistics are becoming increasingly contaminated by information from potentially other 

classes. We could use this to assess algorithm performance. An algorithm showing good results on 

different thresholds performs well with low-quality training sets. Figure 8 shows that MLC, LR, RF, 

SVM, LMT, and SGB algorithms could deal with the contaminated information better than others. 

They could build more robust classifiers from weak training sets. In comparison, Adaboost algorithm 

shows good results only when the segmentation scale is smaller than 15. KNN results decrease sharply 

when the segmentation scale is greater than 10. As we have described hereinbefore, MLC, LR, SVM, 

RBFN, and LMT could perform well using a small training set. However, with deteriorating training 

samples, MLC, LR, SVM and LMT could still perform well. 

Figure 8. Objected-based supervised classification results. 
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6. Summary 

In this study, we compared 15 classification algorithms in the classification of the same Landsat TM 

image acquired over Guangzhou City, China, using the same classification scheme. The algorithms 

were tested on a pixel-based and segment-based classification. In the pixel-based decision making, the 

algorithms were tested with two band sets: a 4-band set including only the visible and near infrared 

TM bands and a 6-band set with all TM bands excluding the thermal and panchromatic bands. All 

supervised classifiers were tested with 12 sets of different sized training samples. In the segment-based 

decision making, the algorithms were tested with different segment sizes determined by different scale 

factors. All tests were evaluated by the same set of test samples with the total overall accuracy 

measured by the Kappa coefficient. The results can be summarized in the following: 

(1) The 4-band set of TM data by excluding the two middle infrared bands resulted in Kappa 

accuracies in the range between 0.818 and 0.873. The inclusion of the two middle infrared 

bands in the 6-band case increased this range to 0.850 and 0.899. This indicates the potential 

loss of overall accuracies in urban and rural urban fringe environments with the lack of middle 

infrared bands could be within 3%–5%. 

(2) Unsupervised algorithms could produce as good classification results as some of the supervised 

ones when a sufficient number of clusters are produced and clusters can be identified by an 

image analyst who is familiar with the study area. The accuracy of the unsupervised algorithms 

produced better than 0.841 Kappa accuracies for the eight land cover and land use classes. 

(3) Most supervised algorithms could produce high classification accuracies if the parameters are 

properly set and training samples are sufficiently representative. In this condition, MLC, LR, 

and LMT algorithms are more proper for users. These algorithms can be easily used with 

relatively more stable performances.  

(4) Insufficient (less representative) training caused large accuracy drops (0.06–0.15) in all 

supervised algorithms. Among all the algorithms tested, MLC, LR, SVM, and LMT are the 

least affected by the size of training sets. When using a small-sized training set, MLC, LR, 

SVM, RBFN, and LMT performed well. 

(5) In segment-based classification experiments, most algorithms performed better when the 

segment size was the smallest (with a scale factor of 5). At the scale of 5, SGB outperformed 

all other algorithms by producing the highest Kappa values of 0.924 and this is followed by RF. 

All algorithms are less sensitive to the large increase of data dimensionality. MLC, LR, RF, 

SVM, LMT, and SGB algorithms are the best choices to do the classification. They could 

produce relatively good accuracy at different scales. 

With the increasing number of new algorithms emerging rapidly, there is a need to assess their 

performance and sensitivities to various kinds of environments. This need is best addressed by 

developing standard image sets with adequate classification scheme and sufficiently representative 

training and testing samples. This research represents one of such attempts. However, more datasets 

containing high quality training and test samples should be established for different types of remotely 

sensed data sets over typical environments in the world to support more objective assessment of new 

algorithms. Only when more comprehensive test data sets covering major environmental types of the 
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world can we make more appropriate selection of algorithms for a particular application of 

remote sensing classification. Another important aspect that has not been assessed in this research is 

feature extraction and use of non-spectral features whose effectiveness has been demonstrated in the 

literature [45–51]. Furthermore, use of multisource data including optical, thermal and microwave data 

in urban land classification should be systematically evaluated [52,53]. Lastly, more analysis of 

the representativeness of training samples should be done in developing algorithm test image sample 

sets [54]. These will be evaluated in a future research. 
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