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Image segmentation quality significantly affects subsequent image classification accu-
racy. It is necessary to develop effective methods for assessing image segmentation
quality. In this paper, we present a novel method for assessing the segmentation quality
of high-spatial resolution remote-sensing images by measuring both area and position
discrepancies between the delineated image region (DIR) and the actual image
region (AIR) of a scene object. In comparison with the most frequently used area
coincidence-based methods, our method can assess the segmentation quality more
objectively in that it takes into consideration all image objects intersecting with the
AIR of a scene object. Moreover, the proposed method is more convenient to use than
the existing boundary coincidence-based methods in that the calculation of the distance
between the boundary of the image object and that of the corresponding AIR of the
scene object is not required. Another benefit of this method over the two types of
method above is that the assessment procedure of the segmentation quality can be
conducted with less human intervention. The obtained optimal segmentation result can
ensure maximal delineation of the extent of scene objects and can be beneficial to
subsequent classification operations. The experimental results have shown the effec-
tiveness of this new method for both segmentation quality assessment and optimal
segmentation parameter selection.

1. Introduction

Since the 1990s, more and more high-spatial resolution remote-sensors have been in
operation. The massive remote-sensing images acquired by these sensors have been
widely applied in many fields such as forest change detection (Desclée, Bogaert, and
Defourny 2006) and land use monitoring (Myint et al. 2011). Remote-sensing images with
high spatial resolution offer more detailed spatial information on the earth’s surface than
middle- and coarse-spatial resolution images. Traditional pixel-based image analysis
approaches face serious problems in analysing and classifying high-spatial resolution
remote-sensing images (Campbell 2002), because they only take spectral information
(pixel values) as a basis to analyse and classify remote-sensing images while neglecting
both spatial information and a group of pixels which should be considered together as an
object (Benz et al. 2004; Walter, 2004; Castillejo-González et al. 2009). As an alternative
approach, Object-based image analysis (OBIA) has been proposed (Blaschke et al. 2000;
Schiewe, Tufte, and Ehlers 2001; Hay et al. 2005; Hay and Castilla 2006; Yu et al. 2006;
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Im, Jensen, and Tullis 2008; Hölbling et al. 2012). One of the fundamental steps in OBIA
is image segmentation, in which the image is partitioned into a number of meaningful
image objects (or segments) (Marçal and Rodrigues 2009). Ideally, an image object should
match the corresponding actual image regions (AIRs) of a scene object completely. In
practice, however, an image object often mismatches the corresponding AIR of a scene
object because of the influence of image quality, landscape heterogeneity, and segmenta-
tion algorithms (Carleer, Debeir, and Wolff 2005; Lang, Schöpfer, and Langanke 2009).
The degree of mismatch represents the segmentation quality, which significantly affects
subsequent image classification accuracy (Dorren, Maier, and Seijmonsbergen 2003;
Neubert and Meinel 2003; Blaschke, Burnett, and Pekkarinen 2004; Meinel and
Neubert 2004; Weidner 2008; Kim, Madden, and Warner 2009; Blaschke 2010; Clinton
et al. 2010). Therefore, it is necessary to develop effective methods for assessing image
segmentation quality.

At present, there are two types of image segmentation quality assessment methods:
unsupervised methods (or empirical goodness methods) and supervised methods (or
empirical discrepancy methods) (Zhang 1996; Zhang, Fritts, and Goldman 2008;
Corcoran, Winstanley, and Mooney 2010; Johnson and Xie 2011). Unsupervised methods
(Chabrier et al. 2006; Espindola et al. 2006; Kim, Madden, and Warner 2009; Corcoran,
Winstanley, and Mooney 2010; Johnson and Xie 2011) assess a segmented image based
on how well it matches a broad set of characteristics of segmented images as desired by
humans (Zhang, Fritts, and Goldman 2008), and use certain quality criteria which are
typically established in agreement with human perception of what makes a good segmen-
tation (Zhang 1997; Chabrier et al. 2006). Supervised methods (Delves et al. 1992; Yang
et al. 1995; Abeyta and Franklin 1998; Lucieer and Stein 2002; Paglieroni 2004; Carleer,
Debeir, and Wolff 2005; Zhan et al. 2005; Möller, Lymburner, and Volk 2007; Radoux
and Defourny 2007; Tian and Chen 2007; Radoux and Defourny 2008; Weidner 2008)
involve comparing a segmentation result to a ground truth. The reliability of unsupervised
methods depends on the rationality of the proposed quality criteria. However, desirable
quality criteria for unsupervised methods are usually chosen subjectively, and moreover, it
should be assured that the criteria are not used by segmentation algorithms to avoid a bias
assessment (Carleer, Debeir, and Wolff 2005). Supervised methods can be both objective
and quantitative (Zhang 1996). As long as ground truths or reference segmentations can
be obtained, supervised methods should be desirable for the assessment of segmentation
results.

Among supervised methods, there are two main types of image segmentation
quality assessment: area coincidence-based methods (Yang et al. 1995; Lucieer and
Stein 2002; Zhan et al. 2005; Möller, Lymburner, and Volk 2007; Tian and Chen
2007; Weidner 2008) and boundary coincidence-based methods (Abeyta and Franklin
1998; Radoux and Defourny 2007, 2008). Area coincidence-based methods select the
image object with the largest area or the image objects with the dominant intersection
area to assess the segmentation quality by comparing its/their area(s) with that of the
corresponding AIR of a scene object. In fact the image objects, which have not been
utilized in the area coincidence-based methods, are not dispensable for the assessment
of segmentation quality. For example, there is a segmentation result in which all image
objects fall completely within the AIR of a scene object. Such segmentation result is
beneficial to subsequent classification operation because there is no area discrepancy
between the merging region of all image objects and the AIR of the scene object. If
only one image object or parts are selected for the assessment of the segmentation
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result, the conclusion is that the segmentation result is unsuitable. Therefore, most
existing area coincidence-based methods are not objective in the assessment of image
segmentation quality. Boundary coincidence-based methods are used to assess seg-
mentation quality by calculating the distance between the boundary of the image
object and that of the corresponding AIR of a scene object. The shorter the distance,
the better the segmentation quality. The result of distance calculation depends on the
way points are selected on the boundaries and the number of these points. However,
there is no better way to select the points than by applying the experience of experts.
As a consequence, the result of distance calculation could be unreliable. Another
common problem with the use of boundary coincidence-based methods is that it is
complicated to identify the boundary of an image object that corresponds to the
boundary of the corresponding AIR of a scene object, because the geometric shape
of the boundary of the image object is usually different from that of the boundary of
the corresponding AIR of the scene object, which makes direct calculation of the
distance difficult between the boundary of the image object and that of the corre-
sponding AIR of the scene object. Because of the above-mentioned problems, the
application of boundary coincidence-based methods is limited.

The goals of image segmentation are to perform the automated delineation of the
image region of a scene object and to serve subsequent classification operations
(Marçal and Rodrigues 2009; Blanchard, Jakubowski, and Kelly 2011). The quality
of the segmentation result depends on the degree of discrepancy between the DIR and
the corresponding AIR of a scene object. Many researchers have suggested that area-
and position-based indices for segmentation quality assessment could be combined by
a range of normalization or standardization methods (Levine and Nazif 1982; Möller,
Lymburner, and Volk 2007; Weidner 2008; Clinton et al. 2010). According to the
object-fate analysis method (Schöpfer and Lang 2006; Schöpfer, Lang, and Albrecht
2008; Lang, Schöpfer, and Langanke 2009; Albrecht, Lang, and Hölbling 2010),
image objects intersecting with the corresponding AIR of a scene object can be
categorized into three types: ‘good’, ‘expanding’, and ‘invading’ objects (Figure 1),
and segmentation quality is assessed by comparing the numbers of the three types of
image object. However, the object-fate analysis method only considers the number of
the three types of image objects, which implies that either all the image objects are of
the same area or that those of different size have the same effects on segmentation
quality, but this is not the case in practice. Inspired by the principle of the object-fate
analysis method, we propose a novel method for simultaneously assessing image
segmentation quality and selecting the optimal segmentation result. Unlike the
object-fate analysis method, our method considers both area and position discrepancies
between the three types of image object and the corresponding AIR of the scene object
for segmentation quality assessment. In regard to area discrepancies, both the area
commission and area omission errors in delineating the image region of a scene object
are involved. In regard to position discrepancies, the distances between the centroids
of the three types of image object and that of the corresponding AIR of a scene object
are computed (see Figure 1).

The remainder of this article is organized as follows. Section 2 describes the principle
of the proposed method, while the data and segmentation operation used are described in
Section 3; the experimental results are reported at the end of that section. Section 4
discusses the experimental results while Section 5 concludes.
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2. Method

2.1. Object metrics

In this paper, the terms good object, expanding object, and invading object – derived from
the object-fate analysis method – are exploited for segmentation quality assessment
(Figure 1). A good object refers to an image object that falls completely within the
corresponding AIR of the scene object, and is optimal for delineation of the corresponding
AIR of the scene object because it does not lose its own regions and contains no
neighbouring regions. An expanding object refers to an image object that exceeds the
corresponding AIR of the scene object. Its centroid lies within the corresponding AIR of
the scene object and the area of the overlapping region is greater than 50% of the area of
the image object. An expanding object contributes to delineation of the corresponding

′Good′ object

′Expanding′ object

′Invading′ object

The Actual Image Region (AIR) of the scene object

The Delineated Image Region (DIR) of the scene object

Controids

Legend

Figure 1. Spatial relationships between image objects and the corresponding AIR of the scene
object (modified from Lang, Schöpfer, and Langanke (2009)).
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AIR of the scene object because its main part falls within the corresponding AIR of the
scene object. An invading object refers to an image object that exceeds the corresponding
AIR of the scene object, with its centroid lying outside the corresponding AIR of the
scene object and the area of the overlapping region less than 50% of the area of the image
object. An invading object is problematic to delineation of the corresponding AIR of the
scene object because its main part does not fall within the corresponding AIR of the scene
object. Thus, the merging region of good and expanding objects represents the DIR of the
scene object (shown as the red-bordered polygon in Figure 1). This area, together with the
position of the DIR of the scene object, determines segmentation quality. The key to
segmentation quality assessment is to represent the area discrepancy and position dis-
crepancy between the DIR and the corresponding AIR of the scene object.

We developed two metrics to represent the area discrepancy between the DIR and the
corresponding AIR of a scene object – omission error (OE) and commission error (CE).
OE refers to the area ratio of the overlapped regions between the invading objects and the
corresponding AIR of the scene object to the corresponding AIR of the scene object, as
shown in Equation (1). CE refers to the area ratio of the expanding objects minus the
overlapped regions between the expanding objects and the corresponding AIR of the
scene object to the corresponding AIR of the scene object, as shown in Equation (2).

OE ¼

Pn
j¼1

fAiðjÞ˙Arg

Ar

� 100%; (1)

CE ¼
Pm
k¼1

fAeðkÞ � ðAeðkÞ˙ArÞg
Ar

� 100%; (2)

where n represents the number of invading objects, AiðjÞ is the area of the jth invading
object, Ar is the area of the AIR of the scene object, m represents the number of expanding
objects, and AeðkÞ is the area of the kth expanding object.

OE denotes the ratio of the omission areas (which are included in the neighbour image
objects) to the area of the corresponding AIR of the scene object. CE denotes the ratio of
the commission areas (which really belong to the neighbour image objects) to the area of
the corresponding AIR of the scene object. The lower the values of OE and CE, the lower
the area discrepancy between the DIR and the corresponding AIR of the scene object, and
the better the segmentation quality. When the scene object is well segmented, the values
of OE and CE are both close to 0.

Any changes in the OE and CE values indicate changes in the quality of the image
segmentation, and can be presented in a two-dimensional space as (OE, CE). The distance
between (OE, CE) and the origin represents the quality of the segmentation result. Based
on the OE and CE metrics, we propose the area discrepancy index (ADI), as shown in
Equation (3), to represent the area discrepancy between the DIR and the corresponding
AIR of the scene object:

ADI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OE2 þ CE2

p
: (3)

3820 J. Cheng et al.
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When the segmentation operation is performed on an image with suitable segmentation
parameter combinations, a smaller value of ADI is preferred, and when the scene object is
well segmented, the value of ADI is close to 0.

The segmentation quality is also reflected by the position discrepancy (Molenaar
1998; Ragia and Winter 2000; Zhan et al. 2005; Möller, Lymburner, and Volk 2007;
Ke, Quackenbush, and Im 2010; Pu and Landry 2012) between the DIR and the
corresponding AIR of the scene object. As shown in Figure 2, the segmentation result
of Figure 2(a) is superior to that of Figure 2(b) because the DIR in Figure 2(a) is closer to
the centre of the corresponding AIR than that in Figure 2(b). We propose the position
discrepancy index (PDI) to represent the position discrepancy between the DIR and the
corresponding AIR of the scene object (Equation (4)):

PDI ¼ 1

N þM

 XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX ðkÞ � XrÞ2 þ ðY ðkÞ � YrÞ2

q

þ
XM
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX ðlÞ � XrÞ2 þ ðY ðlÞ � YrÞ2

q !
;

(4)

where N represents the number of good objects, M represents the number of expanding
objects, X(k) and Y(k) are the coordinates of the centroids of the kth good object, X(l) and
Y(l) are the coordinates of the centroids of the lth expanding object, and Xr and Yr are the
coordinates of the centroid of the AIR of the scene object.

From Equation (4), note that the PDI is the average value of all the distances. As the
DIR of the scene object is really composed of the good and expanding objects, in
Equation (4) we compute the distances between the centroids of the good objects and
the centroid of the corresponding AIR of the scene object, and the distances between the
centroids of the expanding objects and the centroid of the corresponding AIR of the scene
object.

For each segmentation result, the segmentation quality can be assessed based on the
ADI and PDI metrics. The assessment procedure is shown in Figure 3.

(a) (b)

Figure 2. The different segmentation results for the same scene object: (a) small position dis-
crepancy between the DIR and the corresponding AIR of the scene object; (b) large position
discrepancy between the DIR and the corresponding AIR of the scene object. The red-bordered
polygon denotes the DIR of the scene object; the slashed polygon denotes the AIR of the scene
object; the black crossed circle denotes the centroid of the AIR of the scene object; and the red
crossed circle denotes the centroid of the DIR of the scene object.
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2.2. Assessment of a single-scene object

As shown in Figure 3, assessment of the image segmentation quality of a single-scene
object is straightforward. For each segmentation result of a single-scene object, the ADI
and PDI values can be obtained as the segmentation quality.

2.3. Assessment of a whole image

Because scene objects of different size and different cover type in the image present
different segmentation quality for each segmentation operation, the ADI and PDI metrics
cannot be directly applied to the assessment of the segmentation quality of the whole
image. Therefore, we define the OEoverall (Equation (5)) and CEoverall (Equation (6)) to
represent the overall area discrepancy between the DIRs and the corresponding AIRs of
all the scene objects of the whole image:

OEoverall ¼
Pn
i¼1

ðOEðiÞ � ArðiÞÞ
Pn
i¼1

ArðiÞ
� 100%; (5)

CEoverall ¼
Pn
i¼1

ðCEðiÞ � ArðiÞÞ
Pn
i¼1

ArðiÞ
� 100%; (6)

Overlay Image Objects

Categorization
‘Invading’

Objects

‘Expanding’
Objects

‘Good’
Objects

Measuring the discrepancies
between AIR and DIR

ADI PDI

The Delineated Image Region  (DIR)
of the scene object

The Actual
Image Region (AIR)

of the scene
object

Figure 3. Assessment procedure for image segmentation quality.
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where n represents the number of selected scene objects of the whole image, OEðiÞ is the
OE value of the ith scene object, ArðiÞ is the area of the AIR of the ith scene object, and
CEðiÞ is the CE value of the ith scene object.

Based on the OEoverall and CEoverall metrics, we propose the ADIoverall metric, as
shown in Equation (7), to represent the overall area discrepancy between the DIRs and the
corresponding AIRs of all the scene objects of the whole image:

ADIoverall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OEoverall

2 þ CEoverall
2

p
: (7)

We also propose the PDIoverall metric to represent the overall position discrepancy
between the DIRs and the corresponding AIRs of all the scene objects of the whole
image, as shown in Equation (8):

PDIoverall ¼ 1

n

Xn
i¼1

PDIðiÞ; (8)

where n represents the number of the selected scene objects and PDIðiÞ is the PDI value of
the ith scene object.

3. Experiments

3.1. Experimental procedures

High-spatial resolution remote-sensing images are segmented by using any type of
segmentation algorithms and parameter combinations, and the obtained segmentation
results can be assessed based on the ADI and PDI metrics (Figure 4). In order to screen
out the optimal segmentation result, we must take a compromise between the ADI and
PDI. The ideal optimal segmentation result can be obtained when both the ADI and the
PDI are simultaneously at their minimum value; however, such a case rarely occurs. Area
discrepancy information is more important than position discrepancy information for
assessment of the segmentation result (Ji 2012). Thus, we can first select the segmentation
results with relatively low ADI values as the better segmentation results because they
contribute to minimization of the classification error caused by the image segmentation
operation. Due to differences in spectral characteristics, land-cover types, and image
quality, there is no fixed threshold of ADI that can be used as a reference standard and
applied to all remote-sensing images for selecting better segmentation results. Through
repeated testing, an empirical interval (ADI ≥ min(all(ADI)) and ADI ≤ 1.1 * min(all
(ADI))) is used as the standard for selecting optimal segmentation results from the total. If
the ADI value of the segmentation result falls within the interval (ADI ≥ min(all(ADI))
and ADI ≤ 1.1 * min(all(ADI))), the corresponding segmentation result would be classi-
fied as a better segmentation result. Then, from all of the better segmentation results
selected, we can take the segmentation result with the lowest PDI value as the optimal
segmentation result.

3.2. Data and segmentation

The image used for this study is a three-band (RGB) aerial image from Florida, USA
(Figure 5), with a spatial resolution of 0.32 m. The major underlaying surface types in this
image are building, frontage ground, road, grassland, forest, and water.
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We conducted the image segmentations by using Definiens 8.64 (formerly eCognition)
(http://www.definiens.com). Definiens 8.64 uses multi-resolution segmentation based on
the region merging algorithm (Benz et al. 2004). This algorithm uses three parameters that
allow users to tune the segmentation results. The first parameter is scale parameter H.
Higher H values result in larger image objects, and vice versa; the other two parameters
are shape and compactness. The shape criterion determines to what degree shape influ-
ences segmentation compared with colour: for example, a shape weighting 0.1 results in a
colour weighting 0.9. In the same way, the value for compactness gives it a relative
weighting against smoothness.

Segmentation algorithm selection
and parameter combinations

Image

Generation

Calculation of ADI Calculation of PDI

IF ADI ≥ = min (all (ADI) ) and
ADI ≤ = 1.1*min (all(ADI))

Better segmentation
results

IF PDI is small

Optiomal segmentation
result

Assessment

Segmentation

Segmentation
results

Figure 4. Experimental procedures.
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Different combinations of scale, shape, and compactness values produce different
segmentation results. For an image, there is an optimal parameter combination by
which image objects are very close to their corresponding AIRs of scene objects.
However, it is a trial-and-error procedure to obtain an optimal parameter combination
(Hay et al. 2003; Stein and de Beurs 2005; Möller, Lymburner, and Volk 2007). In this
study, 175 parameter combinations were generated for scale, shape, and compactness
according to {60, 70, 80, 90, 100, 110, 120} × {0.1, 0.3, 0.5, 0.7, 0.9} × {0.1, 0.3, 0.5,
0.7, 0.9}. Thirty-one buildings and seven forests in the image were randomly selected and
vectorized as the reference segments (Figure 5).

3.3. Results

3.3.1. Segmentation quality assessment of a single-scene object

We selected building 16 as an example of single-scene object. Seven selected segmenta-
tion results with different segmentation scales are presented in Figure 6. For building 16,
the ADI and PDI metrics were calculated for each segmentation result. The assessment
results of 175 segmentation results are shown in Table 1, where the ADI value of 4.70% is
the lowest. Thus, the four corresponding segmentation results with an ADI value of 4.70%
are superior to the other segmentation results for building 16. Among the PDI values of
the four segmentation results for building 16, the lowest PDI value is 0.34. According to
the rule described in Section 2, the segmentation result with ADI of 4.70% and PDI of
0.34 is regarded as being optimal for building 16. Changes of ADI and PDI according to
scale parameter shown in Figure 7 illustrate that ADIs under the condition of scale ≤ 90
are lower than those under the condition of scale >90. This means that the segmentation
results under the condition of scale ≤ 90 are superior to those under the condition of scale

640 m

640 m

50 m

N

Figure 5. The aerial image used for segmentation and quality assessment. The yellow-bordered
polygons are the AIRs of the buildings; the purple-bordered polygons are the AIRs of the forests;
the blue numbers are the codes for buildings; and the purple numbers are the codes for forest.
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>90 (Figures 6(a)–(g)). The PDI values are different at scale 60, 70, 80, and 90, while the
corresponding ADI values are identical. By taking the combined ADI and PDI metrics
into consideration, the scale 90 is regarded as the optimal segmentation scale for the
segmentation of building 16.

Figure 6. Illustrations of the segmentation results for building 16 at scales (a) 60, (b) 70, (c) 80, (d)
90, (e) 100, (f) 110, and (g) 120. Shape and compactness parameters are both 0.1. The yellow-
bordered polygons are the AIRs of the buildings and the black-bordered polygons are the image
objects.
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Table 1. Assessment results of the segmentation results for building 16 from 175 parameter
combinations using ADI and PDI, AFI, OL, and I.

Segmentation parameter combination

OE (%) CE (%) ADI (%) PDI (m) AFI OL IShape Compactness Scale

0.1 0.1 60 4.02 2.43 4.70 5.54 0.561 1.0 0.25
0.1 0.1 70 4.02 2.43 4.70 3.66 0.486 1.0 0.33
0.1 0.1 80 4.02 2.43 4.70 3.66 0.486 1.0 0.33
0.1 0.1 90 4.02 2.43 4.70 0.34 0.016 1.0 0.50
0.1 0.1 100 1.04 29.68 29.70 2.69 −0.286 0.0 1.0
0.1 0.1 110 1.04 29.68 29.70 2.69 −0.286 0.0 1.0
0.1 0.1 120 1.04 29.68 29.70 2.69 −0.286 0.0 1.0
0.1 0.3 60 3.14 3.30 5.86 5.55 0.539 1.0 0.25
0.1 0.3 70 3.14 5.35 6.20 2.95 0.441 1.0 0.33
0.1 0.3 80 3.14 5.35 6.20 2.95 0.441 1.0 0.33
0.1 0.3 90 3.14 5.35 6.20 0.49 −0.022 1.0 0.50
0.1 0.3 100 3.14 5.35 6.20 0.49 −0.022 0.0 1.0
0.1 0.3 110 3.14 5.35 6.20 0.49 −0.022 0.0 1.0
0.1 0.3 120 3.14 5.35 6.20 0.49 −0.022 0.0 1.0
… … … … … … … … … …
0.9 0.9 60 23.60 2.91 23.78 1.46 0.207 0.0 0.25
0.9 0.9 70 100.00a 0.00 100.00 NaNb −0.204 0.0 1.0
0.9 0.9 80 100.00a 0.00 100.00 NaNb −0.339 0.0 1.0
0.9 0.9 90 100.00a 0.00 100.00 NaNb −0.339 0.0 1.0
0.9 0.9 100 100.00a 0.00 100.00 NaNb −0.339 0.0 1.0
0.9 0.9 110 100.00a 0.00 100.00 NaNb −0.339 0.0 1.0
0.9 0.9 120 100.00a 0.00 100.00 NaNb −0.418 0.0 1.0

Notes: aOE 100% demonstrates that the scene object is completely partitioned into the adjacent image objects.
bPDI NaN demonstrates that the value of the PDI metric in this case cannot be calculated because the DIR of the
scene object does not exist.
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Figure 7. Diagram of the assessment result of seven selected segmentation results for building 16
shown in Figure 6 using ADI and PDI.
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We also used the AFI, OL, and I metrics to assess the segmentation quality of building
16 from 175 parameter combinations. AFI (area fitness index) is defined in Equation (9)
(Lucieer and Stein 2002). OL (offspring loyalty) and I (interference) are defined in
Equation (10) and Equation (11), respectively (Schöpfer and Lang 2006; Schöpfer,
Lang, and Albrecht 2008; Lang, Schöpfer, and Langanke 2009; Albrecht, Lang, and
Hölbling 2010). The assessment results are also shown in Table 1. For each segmentation
parameter combination, the assessment results are different from that obtained using the
ADI and PDI metrics:

AFI ¼ Ar � Alargest image object

Ar

; (9)

where Alargest image object is the area of the largest image object intersecting with the scene
object. For a perfect segmentation result, AFI = 0.0. A scene object is over-segmented
when AFI > 0.0. A scene object is under-segmented when AFI < 0.0:

OL ¼ ng
ng þ ne

; (10)

I ¼ ni
nall

; (11)

where ng is the number of good objects, ne is the number of expanding objects, ni is the
number of invading objects, and nall is the number of all intersecting objects. For a perfect
segmentation result, OL = 1.0 and I = 0.0.

The different optimal segmentation results obtained using ADI and PDI, AFI, OL, and I
are shown in Figures 8–11. In Figures 8, 9, and 11, the OL values of results (a) and (b) are the
same, as are the I values. Thus, results (a) and (b) should both be regarded as the optimal
segmentation results according to the object-fate analysis method. However, compared with
result (b), result (a) has lower ADI values. This means that result (a) has lower CE or OE than
result (b) and therefore, result (a) in Figures 8, 9, and 11 is the real optimal segmentation result
for subsequent classification. In Figures 8–11, compared with result (c), result (a) has lower
ADI values. This means that result (a) has lower CE or OE than result (c) and therefore, in
Figures 8–11 result (a) is more suitable for subsequent classification than result (c).

3.3.2. Segmentation quality assessment of the whole image

To simplify the discussion, we selected only building objects in the image as the study
objects. To carry out an overall assessment of the segmentation result for all buildings,
selecting all building objects is not practical in application because there could be many
buildings in the image and acquiring their reference segments is time consuming. Thus, it
is necessary to select building samples using the random sampling approach. The sam-
pling proportion of buildings is the key factor that affects the overall assessment results of
the segmentation quality of all buildings. In the research literature, there is no appropriate
sampling scheme which can be directly used to determine the sampling proportion of
research objects. For this reason, we propose a new sampling scheme (Figure 12) for
determining the sampling proportion of buildings. This sampling scheme is also valid for
the sample selection of other cover types. The experimental steps of this sampling scheme
are explained as follows.
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Figure 10. Optimal segmentation result for forest 1 using (a) ADI and PDI in our method:
ADI = 2.05%, PDI = 2.41, OL = 1, I = 0.25, AFI = 0.58; (b) OL and I in the object-fate analysis
method: ADI = 2.05%, PDI = 2.41, OL = 1, I = 0.25, AFI = 0.58; and (c) AFI: ADI = 5.69%,
PDI = 5.38, OL = 0, I = 0, AFI = −0.14. The purple-bordered polygons are the AIRs of forest 1; the
black- and red-bordered polygons are the image objects.

Figure 9. Optimal segmentation result for building 23 using (a) ADI and PDI in our method:
ADI = 1.34%, PDI = 0.59, OL = 0.75, I = 0, AFI = 0.46; (b) OL and I in the object-fate analysis
method: ADI = 18.52%, PDI = 6.44, OL = 0.75, I = 0, AFI = 0.19; and (c) AFI: ADI = 18.52%,
PDI = 6.44, OL = 0.75, I = 0, AFI = 0.19. The yellow-bordered polygons are the AIRs of building
23; the black- and red-bordered polygons are the image objects.

Figure 8. Optimal segmentation result for building 12 using (a) ADI and PDI in our method:
ADI = 4.18%, PDI = 1.19, OL = 0.5, I = 0, AFI = 0.52; (b) OL and I in the object-fate analysis
method: ADI = 15.27%, PDI = 4.23, OL = 0.5, I = 0, AFI = 0.47; and (c) AFI: ADI = 72.14%,
PDI = 6.28, OL = 0, I = 0.5, AFI = 0.08. The yellow-bordered polygons are the AIRs of building 12;
the black- and red-bordered polygons are the image objects.
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Step 1: without sampling, calculate the ADIoverall and PDIoverall metrics of all the building
research objects. The obtained ADIoverall and PDIoverall values are regarded as the real values
of ADIoverall and PDIoverall metrics of all buildings. Step 2: with the random sampling
approach, building samples are selected from building research objects in various sampling
proportions such as 5%, 10%, 15%, 20%, 25%, and 30%. For each sample operation, the
corresponding ADIoverall and PDIoverall metrics are calculated. In this case, the obtained
ADIoverall and PDIoverall values are the sampling values of ADIoverall and PDIoverall metrics
of all buildings. Step 3: for each sample operation, calculate the deviations between the
sampling values and real values of ADIoverall and PDIoverall metrics. The deviation percentages
are obtained by dividing the deviations by the corresponding real values of ADIoverall and
PDIoverall metrics. Step 4: repeat the sampling operation of each sampling proportion more
than 50 times. In other words, steps 2 and 3 are carried out repeatedlymore than 50 times. As a
result, the histograms of the deviation percentages for each sampling proportion are obtained
(Figure 13). The shapes of the histograms are similar to Gaussian distribution shapes. Step 5:
merge the deviation percentage intervals of the same absolute values into positive deviation
percentage intervals. Recount the sampling times falling within each positive deviation
percentage interval for each sampling proportion. Then, calculate the cumulative percentages
of sampling times for each sampling proportion. The calculation results are shown in Table 2.
As shown in Table 2, if we want to constrain both the deviation percentage of ADIoverall and
that of PDIoverall to less than 4%, the 20% building sample is desirable. Therefore, we selected
the 20% building sample (i.e. 31 buildings in Figure 5) randomly and vectorized these as
reference segments.

According to our method, we use the ADIoverall and PDIoverall metrics to assess the
segmentation results for the buildings. The overall assessment result of the segmentation
results of the 31 buildings is shown in Table 3, fromwhich we can see that, with the parameter
combination of shape 0.3, compactness 0.7, and scale 60, ADIoverall presents the lowest value
of 5.77% and PDIoverall presents the lowest value of 3.81. Thus, the parameter combination of
shape 0.3, compactness 0.7, and scale 60 is the optimal parameter combination that leads to
the optimal segmentation result, as shown in Figure 14.

Figure 11. Optimal segmentation result for forest 6 using (a) ADI and PDI in our method:
ADI = 5.15%, PDI = 1.27, OL = 0.67, I = 0, AFI = 0.44; (b) OL and I in the object-fate analysis
method: ADI = 19.36%, PDI = 11.48, OL = 0.67, I = 0, AFI = 0.23; and (c) AFI: ADI = 18.74%,
PDI = 2.57, OL = 0, I = 0, AFI = −0.16. The purple-bordered polygons are the AIRs of forest 6; the
black- and red-bordered polygons are the image objects.

3830 J. Cheng et al.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

R
em

ot
e 

Se
ns

in
g 

A
pp

lic
at

io
n]

 a
t 0

1:
07

 1
2 

A
ug

us
t 2

01
4 



10

9

8

7

6

5

4

3

2

1

0

Deviation (%)

(a)

<–
10

%

<–
10

%
 ∼

8%

<–
8%

 ∼
 –

6%

<–
6%

 ∼
 –

4%

<–
4%

 ∼
 –

2%

<–
2%

 ∼
0

<0
 ∼

2%

<2
%

 ∼
4%

4%
 ∼

6%

6%
 ∼

8%

8%
 ∼

10
%

>1
0%

T
im

es

Deviation (%)

(b)

<–
10

%

–1
0%

 ∼
8%

–8
%

 ∼
 –

6%

–6
%

 ∼
 –

4%

–4
%

 ∼
 –

2%

–2
%

 ∼
0

0 
∼2

%

2%
 ∼

4%

4%
 ∼

6%

6%
 ∼

8%

8%
 ∼

10
%

>1
0%

10

9

8

7

6

5

4

3

2

1

0

T
im

es

Figure 13. Histograms of the deviation percentages of 50-times building sampling in 5% sampling
proportion: (a) ADIoverall, (b) PDIoverall.
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Figure 12. Sampling scheme for determining the sampling proportion of research objects.
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Table 3. Overall assessment results for segmentation results of the 31 buildings from 175 para-
meter combinations using ADIoverall and PDIoverall.

Segmentation parameter combination

OEoverall (%) CEoverall (%) ADIoverall (%) PDIoverall (m)Shape Compactness Scale

0.1 0.1 60 6.34 5.25 8.22 5.06
0.1 0.1 70 7.75 4.99 9.22 4.83
0.1 0.1 80 8.09 5.47 9.77 4.73
0.1 0.1 90 8.99 6.83 11.30 4.71
0.1 0.1 100 9.02 8.27 12.23 5.08
0.1 0.1 110 10.25 8.84 13.54 4.77
0.1 0.1 120 11.46 8.68 14.37 4.71
0.1 0.3 60 5.22 4.55 6.93 5.48
0.1 0.3 70 6.01 4.45 7.48 4.89
… … … … … … …
0.3 0.7 60 4.11 4.05 5.77 3.81
0.3 0.7 70 4.75 4.28 6.39 4.06
0.3 0.7 80 5.43 4.26 6.90 4.17
… … … … … … …
0.9 0.9 60 22.41 12.71 25.76 5.25
0.9 0.9 70 24.02 16.75 29.28 5.41
0.9 0.9 80 31.88 14.78 35.14 5.68
0.9 0.9 90 36.01 15.14 39.07 6.88
0.9 0.9 100 40.85 12.74 42.80 7.65
0.9 0.9 110 45.56 10.32 46.71 8.23
0.9 0.9 120 48.05 9.00 48.89 9.33

Figure 14. Overall optimal segmentation result for buildings according to shape 0.3, compactness
0.7, and scale 60.
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4. Discussion

Use of boundary coincidence-based methods is limited, as shown by the assessment of
the segmentation results for building 16. For the three segmentation results for building
16 in Figures 6(a)–(c), it is difficult to identify a boundary of an image object that
corresponds to the boundary of the AIR of building 16 for distance calculation. For the
four segmentation results of building 16 in Figures 6(d)–(g), although it is relatively
easy to identify the boundary of the image object that corresponds to the boundary of
the AIR of building 16 for distance calculation, both the means and number of selecting
points on the identified boundary for the distance calculation mainly rely on human
subjective judgement. When selection for the points is unreasonable, the assessment
result is far from ideal.

The method of Lucieer and Stein (2002) and the object-fate analysis method cannot
always express the quality of a segmentation result objectively. In Table 1, when shape
and compactness parameters are both 0.1 and scale parameter changes from 60 to 120,
AFI ranges from 0.561 to −0.286. Because AFI 0.016 is closest to 0.0, the segmentation
parameter combination of shape 0.1, compactness 0.1, and scale 90 is optimal for building
16 according to Lucieer and Stein (2002) and the corresponding segmentation result is
optimal (Figure 6(d)). This conclusion is consistent with that obtained by our method.
However, for the segmentation results of building 16 in Figures 6(a)–(c), AFI is 0.561,
0.486, and 0.486, respectively. This means that the segmentation quality of building 16 in
Figures 6(a)–(c) is very poor. In fact, area discrepancy between the DIR and AIR of
building 16 in Figures 6(a)–(c) is the same as that in Figure 6(d). From the perspective of
the delineation of building 16, the segmentation results for this in Figures 6(a)–(c) are as
good as those in Figure 6(d). The reason that the segmentation result for building 16 in
Figure 6(d) is preferred is that its position discrepancy is lower than that of the three
segmentation results in Figures 6(a)–(c). Although users can obtain the optimal segmenta-
tion parameter according to the balance between the OL and I values, segmentation
quality is not expressed by the OL and I values objectively. For example, we can see
that the I value of the segmentation result for building 16 in Figure 6(a) is 0.25, whereas
the I value of the segmentation result in Figure 6(b) is 0.33. According to the rules of the
object-fate analysis method, with a lower I value the segmentation quality is better. If this
is true, it can be concluded that the segmentation result for building 16 in Figure 6(a) is
better than that in Figure 6(b). However, in reality, this is not the case. This situation
occurs because the object-fate analysis method uses the numbers of different types of
image object as the standard for assessing the segmentation quality without considering
their area.

In our method, we take all the image objects intersecting with the AIR of building 16
into consideration to measure both area and position discrepancy between the DIR and the
AIR. We can see that the ADIs of the segmentation results in Figure 6(a)–(d) are all
4.70%, whereas the PDIs are different. The quality of a segmentation result depends not
only on ADI but also PDI. For a smaller PDI value, the segmentation quality is better.
Thus, the conclusion is that the quality of the segmentation result for building 16 in Figure
6(d) is better than that in Figures 6(a)–(c), and the quality of the segmentation result for
building 16 in Figures 6(b) and (c) is better than that in Figure 6(a). This matches the real
situation very well.

Different assessment methods may derive different optimal segmentation results for
the same scene object, as shown in Figures 8–11. Among all optimal segmentation results,
that derived from our method is most suitable. In the method of Lucieer and Stein (2002),
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the authors tried to find an image object that can represent the corresponding scene object,
and the largest image object intersecting with the scene object was chosen to fulfil this
role. If the area of this largest image object is close to the area of the corresponding scene
object, the segmentation result is regarded as the optimal segmentation result. However, in
some cases, the largest image object has little spatial overlap with the corresponding scene
object even when the areas are fairly close (Figures 8(c) and 9(c)). In this case the largest
image object cannot represent the corresponding scene object. Therefore, the so-called
optimal segmentation result in the method of Lucieer and Stein (2002) is likely to be
unsuitable. In the object-fate analysis method, the authors believe that the optimal
segmentation result depends on the numbers of expanding and invading objects: when
the numbers of both are low, the segmentation result is regarded as optimal. However, two
segmentation results are found when the numbers of both are equal, whereas the areas of
expanding objects are not the same (Figures 8(a) and (b), 9(a) and (b), 11(a) and (b)).
Clearly, the two segmentation results have different effects on subsequent classification
operations. Therefore, the so-called optimal segmentation result from the object-fate
analysis method is likely to be unsuitable. In our method, both area and position
discrepancy between the DIR and the corresponding AIR of a scene object are regarded
as the standards for assessing segmentation quality. When both discrepancies between the
DIR and corresponding AIR of a scene object are low, the extent of the scene object can
be well delineated by the image objects. Even when the optimal segmentation results from
our method have a tendency towards over-segmentation (Figures 8–11, result (a)), they are
still beneficial to the subsequent classification operation in that over-segmentation can be
easily handled through appropriate operations such as merging.

From Table 1, we can see that although the segmentation parameter combination
(shape 0.1, compactness 0.1, scale 90) is optimal for building 16, this may not be suitable
for other scene objects. Generally, different scene objects of the same type in an image
may have different spectral characteristics, shapes, and sizes. As a result, the optimal
segmentation parameters for these scene objects are different. According to the experi-
mental results, we can see that the optimal segmentation parameter combination (shape
0.3, compactness 0.7, scale 60) for buildings is different from that (shape 0.1, compact-
ness 0.1, scale 90) for a single building (building 16). This result is not contradictory,
because assessment of the segmentation quality of a single-scene object only considers the
segmentation result of that object, whereas overall assessment of the segmentation quality
of the buildings takes the segmentation results of all the buildings into consideration.

As shown in Figure 14, some buildings are poorly segmented and some are even
partitioned into many image objects. This conforms to the actual situation. The overall
optimal segmentation result does not mean that all the buildings in the image are well
segmented in this case, because of the differences in spectral characteristic, shapes, and
sizes. Also in Figure 14, other land-cover types (e.g. water surfaces, roads) are not always
well segmented. Marçal and Rodrigues (2009) pointed out that the segmentation result
obviously depends on land-cover type, object size, and shape. By taking object samples
for assessment, the optimal segmentation result for one land-cover type is statistically
optimal for that land-cover type. It is possible that the optimal segmentation parameter
combination for one land-cover type is not suitable for others. If the goal of segmentation
assessment is to obtain the optimal segmentation result for a specific land-cover type, one
need only apply our method to that specific type of object. However, if the goal is to
obtain the optimal segmentation results of all land-cover types, one can apply our method
to each type of object individually. If the goal of the segmentation assessment is to obtain
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the global optimal segmentation result for the whole image, then one should apply our
method to the object samples that cover all land-cover types.

By using our method, the cost in computation time is minimal. The time cost is mainly
in regard to manually obtaining the AIRs of object samples, and it depends on sample
size. Providing the AIRs of object samples are obtained, the following assessment
procedure requires minimal human intervention and can be automatically conducted by
utilizing computer programs or third-party software.

5. Conclusions

In this article, we propose a novel method for assessing the segmentation quality of high-
spatial-resolution remote-sensing images, which is a type of supervised method. The
method classifies image objects as ‘good’, ‘expanding’, or ‘invading’ objects in terms
of the spatial relationships between image objects and the corresponding AIR of the scene
object. As the main parts of both good and expanding objects fall within the AIR of the
scene object, these represent the DIR (delineated image region) of the scene object.
Discrepancies between the DIR and the corresponding AIR of the scene object reflect
the quality of the segmentation result. We propose that ADI and PDI represent these
discrepancies. One can use ADI and PDI to assess the segmentation quality of various
segmentation results. Our method can be used to assess not only the segmentation quality
of a single-scene object, but also the segmentation quality of a whole image. The
assessment procedure for the segmentation result can be conducted by utilizing computer
programs or third-party software, which minimizes human intervention. In comparison
with most other methods used for assessing segmentation quality, our method assesses the
segmentation result more objectively and is more convenient in practice. The obtained
optimal segmentation result can ensure maximal delineation of the extent of scene objects
and can be beneficial to subsequent classification operations.

The effectiveness of our method for assessment of image segmentation quality has
been proven by the reported experimental results. Providing the reference regions of scene
objects are provided, the method can be applied to all scenarios to assess image segmen-
tation quality. Moreover, our method is highly applicable to the assessment of segmenta-
tion results from other segmentation algorithms, although we used only the multi-
resolution segmentation algorithm to obtain the image objects in this study.
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