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Frequency and severity of droughts are projected to increase in many regions, and their effects on temporal dy-
namics of the terrestrial carbon cycle remain uncertain. Ecosystem net primary productivity (NPP) is a key com-
ponent of the carbon cycle, and rainfall use efficiency (RUE = NPP/precipitation) is an important measure of
ecosystem stability and resilience. Herewe investigated the temporal patterns of NPP andRUE and their key driv-
ing climate factors, during the early 21st century drought for four biomes in China: Needleleaf forest, Broadleaf
forest, Woody savannas, and Grassland. Estimates of regional-scale NPP were based on the NASAModerate Res-
olution Imaging Spectroradiometer (MODIS)MOD17NPP product. Our results confirmed recent findings that the
impact of current-year precipitation on NPP was confounded by an array of biotic and abiotic factors. Whereas,
the RUE responded strongly to variations in current- and previous-year drought for all the four biomes and the
four biomes combined. We found that a dry year preceded by a wet year resulted in the highest RUE, and con-
versely, a wet year preceded by a dry year resulted in the lowest RUE. This was attributed to the legacy effect
of precipitation changes in both wet and dry years, and to the resilience of the biomes in the dry years. Based
on these results, we developed and validated a model of RUE based on the Palmer Drought Severity Index
(PDSI) of both current and previous years which works well for these four biomes and all biomes combined.
This model is particularly useful for understanding the impact of prolonged drought at the landscape scale be-
cause it is based on accessible satellite data and available meteorological data and the results have been tested
across four major biomes.

Published by Elsevier Inc.
1. Introduction

Net primary productivity (NPP) is the rate at which all plants in an
ecosystem produce net useful chemical energy (Melillo et al., 1993).
As the foundation of energy flow and nutrient cycle for organisms,
NPP plays an important role in the global carbon balance (Cramer
et al., 1999), and alterations in ecosystem NPP greatly affect CO2 ex-
change between land and atmosphere. Therefore, the interaction of
NPP with climate has been a key focus of ecological study (Li & Guo,
2012; Yang, Fang, Ma, & Wang, 2008; Zhao & Running, 2010).

Ecologists generally agree that water availability is the primary fac-
tor limiting ecosystem function, and this is expressed as patterns of
NPP across many regions and biomes (Lauenroth, 1979; Noy-Meir,
1973; Sala, Gherardi, Reichmann, Jobbagy, & Peters, 2012). Some studies
an Moran).
have shown a very strong linear relationship between rainfall and
aboveground net primary productivity (ANPP) through time atmultiple
sites (Bai et al., 2008; Jobbágy, Sala, & Paruelo, 2002; Sala, Parton, Joyce,
& Lauenroth, 1988). Lieth (1975) developed a statisticalmodel based on
the relation betweenNPP and precipitation and temperature (called the
Miami model) that has been applied globally. Other studies reported
that an array of biotic and abiotic factors affect ANPP (Knapp & Smith,
2001; Running, Thornton, Nemani, & Glassy, 2000), where both current
and previous precipitations controlled a significant fraction of current-
year production (Reichmann, Sala, & Peters, 2012; Sala et al., 2012).
Consequently, rainfall use efficiency (RUE), the ratio of NPP to precipita-
tion, has been suggested as an effective integratingmeasure for evaluat-
ing the response of NPP to spatial and temporary changes in water
availability (Bai et al., 2008). In general, RUE tends to increase spatially
with increasing aridity. For example, Huxman et al. (2004) found that
mean RUE increased with decreasing mean annually precipitation
(MAP) in North and South America across nine different biomes from
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desert grassland to tropical forest. Ponce-Campos et al. (2013) found
that the lowest mean RUE was associated with the highest MAP across
a diverse set of biomes in America and Australia.

Increased aridity and persistent droughts are projected in the 21st
century for most of Africa, southern Europe and the Middle East, most
of the Americas, Australia and Southeast Asia (Hogg, Brandt, &
Michaelian, 2008; Lewis, Brando, Phillips, van der Heijden, & Nepstad,
2011; Phillips et al., 2009; Zeng, Qian, Roedenbeck, & Heimann, 2005).
China suffered from a series of severe droughts during the first decade
of the 21st century (Xiao et al., 2009). The drought in China in 2010
was the most severe in the last 50 years and was considered to be a
‘once in a century drought’ (Li, 2012).

Drought significantly affects ecosystem carbon exchange process,
and has a direct impact on NPP and RUE (Pei, Li, Liu, & Lao, 2013).
Most studies have focused on the response of NPP to the current-year
drought and have shown different responses depending on the sites
(Fay, Carlisle, Knapp, Blair, & Collins, 2003; Fay et al., 2002; Knapp
et al., 2002). In a recent study, Sala et al. (2012) reported that current-
year drought explained only a small proportion of the variation in annu-
al ANPP, and the previous year drought contributed significantly to
changes in ANPP. Reichmann et al. (2012) showed that there was a
legacy effect in transition from dry years to wet years (or the reverse)
resulting in lower ANPP than predicted if the previous-year precipita-
tion was lower than current-year precipitation (and vice versa). They
defined legacies as the difference between observed ANPP and expected
ANPP deduced from a long-term precipitation–production relationship
for a site, and found that the magnitude of the legacy was a function of
the difference between previous and current-year precipitation. Further,
Peters, Yao, Sala, and Anderson (2012) found that the response of ANPP
to long-term variations in precipitation was different across biomes.

In this study, we investigated the temporal relation between RUE
and drought for biomes from grassland to forest in China over the time
period from 2000 to 2010. Estimates of regional-scale NPP were based
on the NASA Moderate Resolution Imaging Spectroradiometer (MODIS)
MOD17 NPP product, which accounts for climate conditions and biomes.
It is thefirst continuous satellite-driven datasetmonitoring global vegeta-
tion productivity at 1-km resolution (Zhao, Heinsch, Nemani, & Running,
2005). Our goal was to determine the impact of prolonged drought on
RUE across large biomes, and generalize these results to model the varia-
tion of RUE with previous- and current-year drought.

2. Data and methods

2.1. NPP, meteorological data and biome map

The annual NPP was derived fromMODIS global data set (MOD17A3)
at 1-km resolution over the time period from 2001 to 2010 (Fig. 1a). The
MOD17A3 NPP product is based on a light-use efficiency model and pro-
vides annual NPP for evaluating spatial–temporal variations in productiv-
ity and terrestrial behavior at the annual scale. These products have been
recently improved by temporally filling missing or cloud-contaminated
FPAR/LAI, spatially interpolating coarse resolution meteorological data
to the 1-kmMODIS pixel level, andmodifying the representation of auto-
trophic respiration in the algorithm. These data are comparable to the re-
cent studies not only in magnitude but also in inter-annual variability
(Zhao et al., 2005).

Four types of biomes, Needleleaf forest, Broadleaf forest, Woody sa-
vannas and Grassland (Fig. 1b) were selected from the biome map of
China generated from the MODIS land cover product (MOD12Q1).
Areaswere chosen for this study if the biome typewas consistent during
the 10 years based on the MOD12Q1 classification. This analysis was
limited to these four distinct biomes, and the four biomes combined.

Meteorological data including the monthly precipitation and the
monthly temperature from1985 to 2010were available from726mete-
orological stations across China, provided by the Climate Database of
China Meteorological Administration (CMA) (Fig. 1d). The annual
precipitation (P) and temperature were obtained from the accumulated
monthly data and then interpolated at 1-km resolution using a kriging
method based on the digital elevation model (DEM) (Emery, 2005;
Martínez-Cob, 1995).

2.2. PDSI and drought type

The degree of drought was determined from the self-calibrated
Palmer drought severity index (PDSI). PDSI is a measure of the cumula-
tive departure in the surface water balance based on latitude, precipita-
tion, temperature and soil type; it has been proven to be an effective
proxy for surface moisture conditions in measuring environment
water stress (Alley, 1984; Palmer, 1965). The self-calibrated PDSI is
based on a time series of measurements, and performs consistently
with accurate comparisons in different areas (Wells, Goddard, &
Hayes, 2004). In this case, PDSI was derived from an estimate of soil
water holding capacity (θ) and self-calibrated with a 25-year record of
monthly precipitation and temperature for each site (Dai, Trenberth, &
Qian, 2004).

Monthly precipitation and monthly temperature during 25 years
(1985–2010) were checked for quality, and sites were removed when
theirmissing datawere greater than fivemonths. The soil water holding
capacity was calculated from soil texture data based on the following
equations (Saxton, Rawls, Romberger, & Papendick, 1986):

θ ¼ 0:3333=Að Þ1B;
A ¼ Exp

�
−4:396− 0:0715� Cð Þ− 4:88� 10−4 � S2

� �

− 4:285� 10−5 � S2 � C
� ��

; and

B ¼ −3:14− 0:00222� C2
� �

− 3:484� 10−5 � S2 � C
� �

:

ð1Þ

S is the percent sand *100 and C is the percent clay *100; and S and C
were extracted from the 1 km soil texturemap of Chinawhichwas gen-
erated using the 1:1,000,000 scale soil map of China and 8595 soil pro-
files reordered in the second national soil survey data set (Shi et al.,
2006; Wang, Tian, Liu, & Pan, 2003).

Based on the PDSI from years 2000 to 2010, all the cells were divided
into wet years and dry years based on a threshold T (Table 1), where

Tdry ¼ PDSImean−0:6745� PDSIstd; and
Twet ¼ 0; ð2Þ

where PDSImean and PDSIstd are the mean and the standard deviation of
PDSI for each biome between 2000 and 2010, respectively. Tdry was
computed to represent the threshold for the bottom 25th percentile of
PDSI for 11-year record (at 0.6745 standard deviations below the
mean). For each cell, the year with PDSI b Tdry was defined as a dry
year, the year with PDSI N Twet was defined as a wet year, and years
with Twet N PDSI N Tdry were considered the norm. Then for each year,
a map was derived with each cell classified into one of four categories
on drought type based on the current and previous-year drought type.
The four categories are the dry year after wet year (W → D), the dry
year after dry year (D → D), the wet year after wet year (W → W),
and the wet year after dry year (D→ W).

2.3. Study areas

In this work, we investigated the impact of drought on NPP across
China. However, the accuracies of the MOD12Q1 land cover product
are reported to be in the range of 70–80% (Zhao et al., 2005) and our re-
sults would be affected by a pixel with misclassified land cover. There-
fore, a subset of this dataset was extracted for investigating the impact
of prolonged drought on NPP and RUE and modeling the variation of
RUE with previous- and current-year drought. Then, the results were
validated with all the regional data in China (masked as illustrated in
Fig. 1b). The data subset was chosen from the 726 meteorological sites
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in China (Fig. 1d). First, we determined the biome type for each site by
masking all the sites on the MOD12Q1 biome map; 77 sites were asso-
ciated with the four biomes. Of these, we confirmed that 54 sites were
associated with the dominant biome by visual interpretation (Fig. 1d)
with Google Earth. We averaged the NPP and RUE data over an area of
3 km ∗ 3 km (3 ∗ 3 pixels) based on the coordinates for each site. The
P and PDSI data were derived from the meteorological data directly.

For clarification in next sections, the subset of all data limited to 54
stations will be referred to as the “station subset data”. The complete
Fig. 1. a)Map of NPPi, Pi, and RUEi in 2008 and NPP10i, P10i, and RUE10i as average values over the
of drought type in 2005; d) distribution of meteorological stations (n= 726)withmeasuremen
colored symbols).
dataset including all pixels in four biomes in China used largely for val-
idation (N N 20,000 for each year), will be referred to as “all regional
data”.

2.4. Data processing

For analysis of the inter-annual variation of P, NPP and RUE in China,
we defined Pi, NPPi and RUEi as values of P, NPP and RUE within year i
from 2001 to 2010, respectively, and P10i, NPP10i, and RUE10i as average
entire 10-year period 2001–2010; b) the four biome distribution fromMOD12Q1; c)map
ts from 1985 to 2012 (black symbols) and 54 sites which are chosen for study areas (large
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values over the entire 10-year period 2001–2010 (Fig. 1a). Then, for
each site, the inter-annual variation in P, NPP, and RUE relative to the
10-year average by year was computed,

ΔPi ¼ Pi‐P10i;
ΔNPPi ¼ NPPi‐NPP10i; and
ΔRUE ¼ RUEi‐RUE10i;

ð3Þ
and the normalized values were computed as

Normalized ΔPi ¼ ΔPi=P10i;
Normalized ΔNPPi ¼ ΔNPPi=NPP10i; and
Normalized ΔRUEi ¼ ΔRUEi=RUE10i:

ð4Þ

image of Fig.�1


Fig. 2. a) The linear relationship between the inter-annual variations of NPP and P in
the four biomes combined based on the station subset data (N = 54 sites by 10 years);
b) correlation coefficients (R2) between normalized ΔNPP and normalized ΔPi for each
four biomes and four biomes combined.

Table 1
The thresholds of each biome for determining the drought type,
where Tdry is the threshold for the bottom 25th percentile of
PDSI for 11-year record and Twet equals zero. The PDSI b Tdry
and PDSI N Twet are defined as a dry year and wet year,
respectively.

Biome type Tdry

Needleleaf forest −1.0700
Broadleaf forest −0.9994
Woody savannas −0.9719
Grassland −1.1736
All combined −1.1179
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Normalized ΔNPPj;k ¼
X2010

i¼2001
Normalized ΔNPPi; j;k

� �
=
X2010

i¼2001
Ni; j;k;

ð5Þ

where∑ i = 2001
2010 (NormalizedΔNPPi,j,k) is the sumof all the normalized

ΔNPPi in a certain biome and drought type in 2001–2010. Ni,j,k is the
number of sites in a certain year, biome and drought type. Similarly,

Normalized ΔRUEj;k ¼
X2010

i¼2001
Normalized ΔRUEi; j;k

� �
=
X2010

i¼2001
Ni; j;k:

ð6Þ

2.5. Modeling method and validation

Based on a previous study reporting that RUE was affected by the
current-year drought (Bai et al., 2008), we assumed that the normalized
ΔRUEi was a function of PDSIi, where

Normalized ΔRUEi ¼ aþ b� PDSIi: ð7Þ

Other studies have reported that the drought legacy affects the
current-year production, especially in circumstances transitioning
from a dry to awet year, and vice versa. Sala et al. (2012) created amul-
tiple regression model of ANPP with current-year P and previous-year
ANPP, where ANPPi = a + b × Pi + c × ANPPi ‐ 1. Based on this
model, we derived a logical relation between normalized ΔRUEi

Normalized ΔRUEi ¼ aþ b� PDSIi þ c� PDSIi‐1: ð8Þ

Unlike the model by Sala et al. (2012), we used normalized ΔRUEi in-
stead of current-year ANPP. We then used previous-year PDSI instead
of previous-year ANPP to eliminate the effects of different biomes and
locations on RUE.

Akaike Information Criterion (AIC) analysis was used to evaluate the
benefit of adding the previous-year PDSI to this model in Eq. (8)
(Sakamoto, Ishiguro, & Kitagawa, 1986). We assumed that the new
model (Eq. 8) was an improvement over the old one (Eq. 7) if the AIC
reduced more than 2.0 (Burnham & Anderson, 2002). We also reported
regression correlation coefficients (R2) as an absolutemeasure of model
fit. The hierarchical partitioning algorithmwas used to calculate the in-
dependent effects of current- and previous-year PDSI on RUE as a per-
centage contribution to the goodness of fit of the model (Chevan &
Sutherland, 1991). Finally, the validation was based on all regional
data in China by comparing the predicted and themeasured normalized
ΔRUEi.

3. Results

3.1. The relation between the annual precipitation and NPP in China

As expected, for the four biomes combined across China using
the station subset data, there was no discernible trend in the inter-
annual variations between normalized ΔNPPi and normalized ΔPi
from 2001 to 2010. The linear regression between the normalized
ΔNPPi and the normalized ΔPi was weak (Normalized ΔNPPi =
0.1724 × Normalized ΔPi + 0.0037, R2 = 0.0799, P b 0.05) (Fig. 2a).
Across the biomes of Needleleaf forest, Broadleaf forest, Woody sa-
vannas and Grassland, the linear relations between the normalized
ΔNPPi and the normalized ΔPi were still weak (R2 b 0.2) (Fig. 2b,
Table 2). This negative result supported the use of RUE as an integra-
tive measure of NPP and P related to ecosystem stability and resil-
ience in the next analyses. That is, Normalized ΔPi explained only
a small part of Normalized ΔNPPi, whereas RUE integrates both
into a single index of ecosystem efficiency that can be related to
prolonged drought.
3.2. The impact of prolonged drought on NPP and RUE

NormalizedΔNPPj;k for the station subset data did not change signif-
icantly with current- and previous-year drought (Fig. 3a, Table 3).
Across every drought type, the variations of normalized ΔNPPj;k be-
tween different drought types were not significant statistically for
each biome and all biomes combined (P N 0.05, Table 3).

Unlike the influence of drought on NPP, for each biome and all bi-
omes combined, normalized ΔRUEj;k showed a significantly declining
trend with the variations in current and previous-year drought, where
the highest normalized ΔRUEj;k appeared in a dry year preceded by a
wet year, and conversely, a wet year preceded by a dry year resulted
in the lowest normalizedΔRUEj;k (P b 0.05) (Fig. 3b, Table 3). This find-
ingwas validatedwith the normalizedΔRUEj;k derived from all regional
data in China (Fig. 3c, Table 3).

image of Fig.�2


Table 2
The relations between normalized ΔNPPi and normalized ΔPi for years 2001–2010 for each biome and all biomes combined for station subset data.

Biome type The linear relationship R2 P

Needleleaf forest Normalized ΔNPPi = −0.0818 × Normalized ΔPi + 0.0020 0.0442 b0.05
Broadleaf forest Normalized ΔNPPi = 0.1382 × Normalized ΔPi − 0.0042 0.0514 b0.05
Woody savannas Normalized ΔNPPi = 0.1223 × Normalized ΔPi + 0.0108 0.0791 b0.05
Grassland Normalized ΔNPPi = 0.2511 × Normalized ΔPi + 0.0052 0.1457 b0.05
All combined Normalized ΔNPPi = 0.1724 × Normalized ΔPi + 0.0037 0.0799 b0.05
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3.3. The model of variation of annual RUE by previous- and current-year
PDSI

Based on this trend of normalized ΔRUEj;k, we created an empirical
equation of normalized ΔRUEi by previous- and current-year PDSI
(Eq. 8, Table 4). The model predicted the variation of RUE by the two
consecutive years of drought in four biomes combined (Fig. 4a). In
Needleleaf forest, Broadleaf forest, Grassland and all biomes combined,
Fig. 3. For the station subset data, a) the variation ofnormalized ΔNPPj;k for each biome and dro
all regional data (N N 20,000 for each year), c) the variation of normalized ΔRUEj;k for each bio
the model based on previous- and current-year PDSI reduced AIC by
more than 2.0 relative to the model based on only current-year PDSI
(Eq. 7). In Woody savannas, the AIC for the two-year PDSI model was
lower, but was reduced by only 0.45 and the R2 of these two models
were close (Fig. 4b, Table 5).

The hierarchical partitioning algorithm showed that the previous-
year PDSI contributedmore than20% to the goodness offit in Needleleaf
forest, Grassland and all biomes combined; in Broadleaf forest and
ught type; and b) the variation ofnormalized ΔRUEj;k for each biome and drought type. For
me and drought type.

image of Fig.�3


Table 3
The P values of the t-test of the difference betweennormalized ΔNPPj;k (andnormalized ΔRUEj;k) for drought types (shown in Fig. 3), where (W → D)means the dry year after wet year,
(D → D)means the dry year after dry year, (W → W)means the wet year after wet year and (D → W)means the wet year after dry year. The terminology for change in drought type is
expressed as, for example, (W → D) → (D → D), where the change is from the drought type (W → D) to drought type (D → D). For P b 0.05, the changes in normalized ΔNPPj;k or
normalized ΔRUEj;k between two drought types are significant statistically and are shown in boldface.

The change of drought type Needleleaf forest Broadleaf forest Woody savannas Grassland All combined

Normalized ΔNPP j;k for station subset data
(W → D) → (D → D) 0.4054 0.1815 0.1508 0.4393 0.3072
(W → D) → (W → W) 0.4135 0.3328 0.1284 0.0486 0.1597
(W → D) → (D → W) 0.3041 0.4524 0.2398 0.2759
(D → D) → (W → W) 0.4726 0.4989 0.2569 0.0501 0.0027
(D → D) → (D → W) 0.1572 0.1243 0.1249 0.0728
(W → W) → (D → W) 0.2139 0.2859 0.2393 0.3919

Normalized ΔRUE j;k for station subset data
(W → D) → (D → D) 0.0089 0.0244 0.0504 0.0001 0.0000
(W → D) → (W → W) 0.0001 0.0341 0.0011 0.0000 0.0000
(W → D) → (D → W) 0.0001 0.0021 0.0000 0.0000
(D → D) → (W → W) 0.0252 0.1059 0.1579 0.0456 0.0017
(D → D) → (D → W) 0.0044 0.0039 0.0012 0.0000
(W → W) → (D → W) 0.0476 0.1411 0.0133 0.0032

Normalized ΔRUE j;k for all regional data
(W → D) → (D → D) 0.0316 0.0056 0.0008 0.0030 0.0003
(W → D) → (W → W) 0.0000 0.0237 0.0001 0.0002 0.0000
(W → D) → (D → W) 0.0000 0.0000 0.0000 0.0000 0.0000
(D → D) → (W → W) 0.0096 0.16787 0.0122 0.0110 0.0025
(D → D) → (D → W) 0.0001 0.0000 0.0001 0.0000 0.0000
(W → W) → (D → W) 0.0029 0.0261 0.0402 0.0243 0.0388
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Woody savannas, the independent effects were less than 20%. Consider-
ing that the ΔAIC between the two models in Broadleaf forest was only
3.28, the results of dependent effects were the same as the AIC analysis
(Fig. 4c). That is, the impact of previous-year drought on RUE was less
important for Broadleaf forest andWoody savannas than for Needleleaf
forest and Grassland. Nonetheless, for all biomes combined, both
current-year and previous-year drought had strong and significant im-
pact on RUE.

The calibrated model was tested with all regional data in China. By
comparing the predicted and the measured normalized ΔRUEi, the R2

based on two-year PDSI and current-year PDSI were reported (Fig. 5).
In four biomes and all biomes combined, the R2 based on two year
PDSI were greater than the current-year PDSI model. In addition, for
most of years, the linear correlations between measured normalized
ΔRUEi and predicting normalized ΔRUEi by two-year PDSI were signifi-
cant (P b 0.05, Eq. 8), except in 2001, 2008 and 2010 for all biomes com-
bined, 2001, 2003–2005 and 2010 for Needleleaf forest, 2008 for
Broadleaf forest, and 2001, 2003, 2004, 2006 and 2008 for Grassland.
In contrast, the linear relationships based on current-year PDSI (Eq. 7)
were significant for only 1–4 years for the Needleleaf forest, Broadleaf
forest, Grassland and all biomes combined. For Woody savannas, there
were 7 years of significant relationships based on current-year PDSI
(Eq. 7).

4. Discussion

Results for Needleleaf forest, Broadleaf forest, Woody savannas,
Grassland and the four biomes combined showed that the temporal lin-
ear relations between NPP and precipitation were weak. This is because
precipitation is only one of an array of biotic and abiotic factors affecting
NPP, including temperature, nutrient availability, physical properties of
soil, and intertwining biotic interactions (Knapp & Smith, 2001; Sala
et al., 1988; Zhao & Running, 2010). The MODIS NPP product was
based on a light use efficiency model which relies primarily on MODIS
spectral measurements, but also includes current-year precipitation,
temperature, and solar radiation (Running et al., 2000). Sala et al.
(2012) and Reichmann et al. (2012) reported that current-year precip-
itation explained only a small proportion of annual ANPP, and that
previous-year precipitation and ANPP controlled a significant fraction
of current-year production. By dividing ANPP by P to obtain RUE, we
were then able to determine the impact of current- and previous-year
drought on ecosystem stability and resilience.

We found that the variations of RUE were significantly related to
the prolonged drought. In our results, the normalized ΔRUEj;k in
dry years was positive for each one of the four biomes and the four bi-
omes combined. Further, RUE was even higher in the dry year after a
wet year (W → D) indicating a biome-scale sensitivity to drought
where ecosystems sustained NPP by increasing their RUE. Thus, these
results suggest that the ecosystem resilience, defined as the capacity
to absorb disturbances and retain the same function, feedbacks and sen-
sitivity (Holling, 1973; Walker, Holling, Carpenter, & Kinzig, 2004),
allowed biomes to retain NPP by increasing annual RUE. In addition,
we found that the normalized ΔRUEj;k decreased in a dry year after
dry year (D → D) supporting previous results from Ponce-Campos
et al. (2013) where they found that the resilience decreased with
prolonged warm drought.

In addition, the RUE decreasedwith the increasing water availability
in the wet year. However, the normalized ΔRUEj;k was even lower in a
wet year when the previous year was a dry year. Reichmann et al.
(2012) hypothesized that lags in the response of ecosystems to changes
in RUE explain this result. The legacy effects result from transitions from
dry towet years or the reverse. In thewet year after dry year, because of
the legacy effects from the previous drought, NPP was lower than in the
normal wet year, and then normalized ΔRUEj;k was lower in D → W
than in W → W. Meanwhile, the legacy effects also appeared in the
dry year after wet year (W → D). NPP was higher than in the normal
dry year because the previouswet year, the resilience and legacy effects
combined together to cause the normalizedΔRUEj;k to be higher in dry
year after wet year.

Based on the patterns of normalized ΔRUEj;k with the prolonged
drought, we created an empirical model of normalized ΔRUEi based
on previous- and current-year PDSI using the station subset dataset.
This model could explain the impact of prolonged drought on RUE.
Our results showed that the normalized ΔRUEi was better predicted
by the model with two-year drought (Eq. 8) than by the model
with current-year drought (Eq. 7) for all biomes except Woody



Fig. 4. Using the station subset data, a) the model of RUE by two consecutive years
of drought in four biomes combined, where Normalized ΔRUEi = −0.0109 +
(−0.0537PDSIi) + 0.0419PDSIi − 1; b) the correlation coefficient (R2) of the normalized
ΔRUEi model by current-year PDSI (Eq. 7) and by two-year PDSI (Eq. 8); and c) the inde-
pendent effects of two year PDSI on the goodness of fit.
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savannas. In the latter case, the improvement associated with adding
the previous year was marginal. Because the transpiration water con-
sumption of Broadleaf forest and Woody savannas was larger than
other biomes (Woodward, 1992), the variation of RUE was mainly
Table 4
The models of normalized ΔRUEi as a function of two-year drought and current-year drought

Biome Model

Needleleaf forest Normalized ΔRUEi = −0.0430 +
Normalized ΔRUEi = −0.0452 +

Broadleaf forest Normalized ΔRUEi = −0.0242 +
Normalized ΔRUEi = −0.0442 +

Woody savannas Normalized ΔRUEi = 0.0057 + (
Normalized ΔRUEi = 0.0053 + (

Grassland Normalized ΔRUEi = 0.0019 + (
Normalized ΔRUEi = ‐ 0.0108 +

All combined Normalized ΔRUEi = −0.0109 +
Normalized ΔRUEi = −0.0218 +
affected by the current-year drought, and the impact of previous-year
drought was less.

There are two factors that affected the validation accuracy of
the predicted normalized ΔRUEi. First, the validation data were
distributed widely in China; the Needleleaf forest and Broadleaf
forest were grown both in the north and south, the Grassland
was distributed throughout the west, and only Woody savannas
were distributed in the south central. The same biome in differ-
ent areas had different sensitivity to drought (Hall, Carroll,
Vandermeer, & Rosset, 1990; Wu & Wang, 2000). The mean an-
nual precipitation in the south is greater than in the north in
China, and biomes in drought areas generally have a higher
RUE. This led to a decrease in the accuracy of the predicted
normalized ΔRUEi in different areas. Second, MOD12Q1 land
cover accuracies are known to fall in the range of 70–80%.
Through the process of selecting the study areas using visual
interpretation with Google Earth for the station subset, we
found that the MOD12Q1 biome designations were only about
70% (54/77 ∗ 100) accurate. At the regional scale of the valida-
tion dataset, the many mixed and misclassified pixels affected
our assessment of the accuracy of the predicted normalized
ΔRUEi.

5. Conclusions

Our results support the view that the relation between an-
nual NPP and current-year precipitation is weak, and RUE is a
better indicator of the biome sensitivity to water availability
(Huxman et al., 2004; Ponce-Campos et al., 2013). Results also
concur with recent work in other locations that showed how
extreme climate change not only affected the carbon cycle con-
currently, but also initiated lagged responses (Arnone et al.,
2008; Reichstein et al., 2013). Due to the ecosystem resilience
in dry years and the legacy effect of precipitation in both dry
and wet years, RUE showed a significant, predictable trend
with the prolonged drought. We quantified the impact of se-
vere prolonged drought on RUE and created a model of RUE
based on previous- and current-year PDSI. These findings are
useful because they are based on satellite data across four bi-
omes. The model can be used to assess the impacts of climate
change on terrestrial ecosystems in China, especially if
prolonged drought continues. This work is a first step in under-
standing the impact of prolonged drought on RUE at the re-
gional scale across a heterogeneous landscape.
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Table 5
Comparison of models which predicted normalized ΔRUEi as a function of both previous- and current-year PDSI (Eq. 8) and current-year PDSI (Eq. 7). The AIC is the Akaike Information
Criterion value of the models. According to AIC criteria, the most parsimonious models are shown in boldface. N is the number of samples for each biome.

Biome type Model N AIC ΔAIC R2

Needleleaf forest Eq. (8) 100 −368.06 0.00 0.27
Eq. (7) −354.29 13.77 0.15

Broadleaf forest Eq. (8) 70 −241.39 0.00 0.22
Eq. (7) −238.11 3.28 0.16

Woody savannas Eq. (8) 30 −107.74 0.00 0.16
Eq. (7) −107.29 0.45 0.11

Grassland Eq. (8) 340 −1230.10 0.00 0.18
Eq. (7) −1180.90 49.2 0.05

All combined Eq. (8) 540 −1955.80 0.00 0.20
Eq. (7) −1886.00 69.80 0.08
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