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Abstract: The ultimate goal of our multi-article series is to demonstrate the Allometric 
Scaling and Resource Limitation (ASRL) approach for mapping tree heights and biomass. 
This third article tests the feasibility of the optimized ASRL model over China at both site 
(14 meteorological stations) and continental scales. Tree heights from the Geoscience 
Laser Altimeter System (GLAS) waveform data are used for the model optimizations. 
Three selected ASRL parameters (area of single leaf, α; exponent for canopy radius, η; and 
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root absorption efficiency, γ) are iteratively adjusted to minimize differences between the 
references and predicted tree heights. Key climatic variables (e.g., temperature, 
precipitation, and solar radiation) are needed for the model simulations. We also exploit the 
independent GLAS and in situ tree heights to examine the model performance. The 
predicted tree heights at the site scale are evaluated against the GLAS tree heights using a 
two-fold cross validation (RMSE = 1.72 m; R2 = 0.97) and bootstrapping (RMSE = 4.39 m; 
R2 = 0.81). The modeled tree heights at the continental scale (1 km spatial resolution) are 
compared to both GLAS (RMSE = 6.63 m; R2 = 0.63) and in situ (RMSE = 6.70 m; R2 = 0.52) 
measurements. Further, inter-comparisons against the existing satellite-based forest height 
maps have resulted in a moderate degree of agreements. Our results show that the 
optimized ASRL model is capable of satisfactorily retrieving tree heights over continental 
China at both scales. Subsequent studies will focus on the estimation of woody biomass 
after alleviating the discussed limitations. 

Keywords: tree height; allometric scaling law; resource limitation; model optimization; 
geoscience laser altimeter system (GLAS); national forest inventory (NFI)  

 

1. Introduction 

Forest structural attributes are crucial indicators for demonstrating forest ecosystem services [1].  
In particular, the spatio-temporal patterns of forest height (potentially biomass) provide regional or 
global contexts of terrestrial carbon fluxes and storages [2–4]. Due to the broad geographical extent, 
large spatial variability and the limited accessibility for field inventories, mapping forest heights at a 
larger scale generally relies on three-dimensional (3D) remote sensing techniques such as light or radio 
detection and ranging (lidar or radar) systems [5–8]. For instance, the Geoscience Laser Altimeter 
System (GLAS) is the first spaceborne lidar instrument providing reasonable vertical profiles of forests 
with global coverage [9]. However, because of its intrinsic discrete sampling scheme, GLAS needs 
additional extrapolation procedures to produce wall-to-wall forest height maps. Recent studies have 
used several statistical models based on valid relationships between forest heights and geospatial 
predictors, which have produced spatially continuous forest height maps depicting the spatial variation 
in vertical forest structures [5–8,10,11]. Nevertheless, their extrapolation approaches are likely to 
depend on input data quality and quantity, and often neglect the physical/physiological mechanisms 
governing tree growth. 

For better mechanistic understanding in mapping forest heights, Kempes et al. [12] presented the 
Allometric Scaling Resource Limitation (ASRL) model composed of two conceptual schemes:  
(a) allometric scaling laws may provide a valid tree geometry [13,14] and (b) potential tree growth is 
constrained by local resources (e.g., water, temperature, sunlight, and wind) [15]. However, the ASRL 
model with universal allometric coefficients and scaling exponents shows less predictive power when 
applied to diverse eco-climatic regimes and forest types of varying age classes [16,17]. Thus, a 
synergistic combination of physical/physiological mechanism (i.e., ASRL approach) and 3D remote 
sensing techniques (i.e., GLAS) has recently been explored using parametric optimizations [16,17].  
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The first [16] in a multi-article series has provided a thorough description of the optimized ASRL 
model. The GLAS altimetry is implemented to iteratively adjust three selected ASRL parameters  
(area of single leaf, α, exponent for canopy radius, η, and root absorption efficiency, γ).  
This parametric optimization minimizes disparities between the reference and modeled tree heights. 
The optimized ASRL model results in a contiguous map of the maximum forest heights over the 
continental USA (CONUS) at the 1 km spatial resolution, and shows a moderate predictive power with 
a root mean square error (RMSE) of 3.31 m and a coefficient of determination (R2) of 0.59 (from a 
two-fold cross validation). This showed the feasibility of the optimized ASRL model for large-scale 
mapping. The second study [17] in this series examined the above approach at a finer spatial scale, i.e., 
FLUXNET sites, where more accurate input information is available. This site-scale test shows a 
satisfactory performance of the optimized ASRL model through the two-fold cross validation (R2 = 0.85; 
RMSE = 1.81 m) and bootstrapping evaluation (R2 = 0.66; RMSE = 2.60 m). 

Based on the experiments over the CONUS in the previous two articles, our scientific question 
aroused here is if the optimized ASRL model is applicable to other forest ecosystems, e.g., over the 
continental China (CONNA). The geographical extents and the diversity in climate, topography, forest 
types of the CONNA are comparable to those of the CONUS. Therefore, this third study aims to test 
the optimized ASRL model over the CONNA at both site and continental scales. In this study, we 
produced the modeled heights for Chinese forests using the same manner used in previous articles [16,17]. 
The evaluations were made against field-measured and GLAS-derived tree heights. In addition, the 
spatially continuous field of maximum tree heights (1 km resolution) over the CONNA was compared 
against the existing forest height maps from Lefsky [7] and Simard et al. [8]. This study briefly 
introduced the optimized ASRL model along with input variables and key allometric scaling 
parameters. Since we are examining the applicability of the model across different forest ecosystems, 
our discussions focus more on the final outcomes over the CONNA rather than the initial predictions 
or the optimization processes whose details are given in previous articles [16,17].  

2. Material 

2.1. Input Data for the ASRL Model 

2.1.1. Climate Data 

Input climatic variables for the ASRL model include precipitation, temperature, relative humidity, 
wind speed, and incoming solar radiation, which determine the available and evaporative flow rates. 
The ASRL model quantifies resource limitations on tree’s growth using these flow rates [12]. This 
study obtained two types (weather station-based and gridded data) of climate datasets over the 
CONNA (Table 1).  

First, weather station-based climatic variables were used for the site-scale ASRL simulations. The 
China Meteorological Data Sharing Service System (CMDSSS) provides the annual meteorological 
records observed from 754 weather stations [18] (Figure S1 of Supplementary Information). This study 
implemented such observations spanning over 50 years (1951–2007), comprised of annual total 
precipitation, average temperature, relative humidity, wind speed, and solar radiation time. We further 
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converted the observed solar radiation time into the incoming solar radiation rate, as needed for the 
model predictions, using a statistical method suggested by Liao et al. [19].  

Second, gridded climate datasets (1 km resolution) were exploited in the continental-scale ASRL 
model simulations. The WorldClim [20] produces long-term (1950–2000) climate maps based on the 
thin-plate smoothing spline algorithm [21]. As annual total precipitation and average temperature were 
only available input climate data from the WorldClim, we interpolated other climatic variables from 
the CMDSSS using ordinary kriging [22] to generate the gridded maps of annual average relative 
humidity, wind speed, and solar radiation. Uncertainties related to this interpolation process are 
discussed in Section 4.3. 

2.1.2. Ancillary Data 

Simulation and optimization procedures of the ASRL model also require other ancillary datasets 
including digital elevation model (DEM), leaf area index (LAI), land cover (LC), and percent tree 
cover (Table 1). The DEM and LAI were input ASRL variables to calculate the potential evaporative 
flow rate of trees, while LC and percent tree cover were used to identify forested lands over the 
CONNA. In this study, we used the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) Global DEM (GDEM V2, 30 m grid) [23]. The approximate growing season 
(June to September) averaged LAI data from 2003 to 2006 were obtained from a refined version of the 
Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product (1 km grids) [24]. The 
MODIS global LC (MCD12Q1, 500 m grid) [25] and Vegetation Continuous Field (VCF; MOD44B, 
250 m grid) [26] for the year 2005 accounted for the rest of ancillary datasets. To standardize the 
spatial resolutions, finer gridded ancillary data were resampled into the 1 km resolution using the 
majority principle technique for categorical values and the cubic convolution method for numerical 
values [27]. We took into account three forest types (evergreen, deciduous, and mixed forests) 
aggregated from the five International Geosphere-Biosphere Programme (IGBP) forest classes, and 
forested lands were defined by a percent tree cover (≥50%) based on the VCF product (Figure 1). The 
above-described ancillary datasets were used in the ASRL model simulations at both site and 
continental scales. 

2.1.3. Eco-Climatic Zone 

For the computationally practical model optimizations (see Section 3.1), we separately defined the 
eco-climatic zones over the CONNA, accounting for three forest types, annual total precipitation  
(30 mm intervals) and annual average temperature (2 °C intervals). This classification resulted in 537 zones 
at the site scale and 5805 zones at the continental scale. This zonal information was used as the basic 
element (unit or level) in the model optimization and evaluation process.  

2.2. Tree Height Measurements  

2.2.1. GLAS-Derived Tree Heights 

The GLAS-derived tree heights over the CONNA were used to optimize the ASRL parameters and 
to assess the model’s performance. In this study, we obtained the latest release of GLAS laser altimetry 
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data (Release-33) from the National Snow and Ice Data Center. Amongst various altimetry products of 
the Release-33, the level-2 data (i.e., GLA14) were selected for the maximum tree height retrieval. The 
GLA14 provides metrics for land surface elevation along with the geo-location of laser footprints and 
the waveform parameters, such as signal beginning and echo energy peaks [28]. We exploited the 
GLAS data recorded from May to October (2003–2006) because this seasonal period represents the 
best approximate of forests’ leaf-on condition. The defoliation of deciduous forests may generate 
underestimations in the GLAS-derived maximum tree heights. As it is impractical to estimate the 
ellipsoidal shapes and sizes for each footprint [29], this study assumed that all the GLAS footprints are 
likely to have a circular shape with a diameter of 70 m [30]. 

Table 1. Climatic and ancillary datasets prepared for the Allometric Scaling and Resource 
Limitation (ASRL) model. 

Types Input Variable Unit 
Spatial 

Resolution 

Temporal 

Range 
Source 

Climate dataset 

Annual Average Relative 

Humidity 
% 

Weather  

station-based 
1951–2007 CMDSSS [18] 

Annual Average Wind Speed m/s 

Annual Incoming Solar 

Radiation * 
W/m2 

Annual Total Precipitation mm 

Annual Average Temperature °C 

Annual Total Precipitation mm 
1 km 1950–2000 WorldClim [20] 

Annual Average Temperature °C 

Ancillary 

dataset 

DEM m 30 m 2011 ASTER GDEM V2 [23] 

Growing Season Averaged LAI N/A 1 km 
2003–2006  

June–September 

Post-processed MODIS LAI 

[24] 

LC N/A 500 m 2005 MODIS MCD12Q1 [25] 

VCF % 250 m 2005 MODIS MOD44B [26] 

* Annual incoming solar radiation was computed from the observed solar radiation time [19]. 

The GLAS waveforms might be degraded by the atmospheric forward scattering, signal saturation, 
background noise (low cloud), and slope gradient effects. In addition, GLAS shots over non-forested 
lands were not of interest. This study, thus, adopted the five screening steps of previous studies [16,17] 
to remove the invalid GLAS shots based on the GLA14 internal quality flags and the ancillary datasets 
(LC, VCF, and GDEM: see Table S1). From the full-waveform profile of each valid GLAS shot, we 
computed the distance between signal beginning (WSB) and ground peak (WGP) points using the 
Gaussian decomposition approach [31]. This distance theoretically represents the maximum tree height 
within circular GLAS footprint since the WSB and WGP correspond to the highest point of tree and the 
ground surface elevation, respectively. Here, we additionally employed a simple physically-based 
slope correction approach of Lee et al. [32], taking into account the topographic condition (slope, θ) 
and GLAS footprint size (dGLAS). The final metric of GLAS-derived maximum tree heights (HGLAS) 
over the CONNA was calculated using Equation (1). Distribution of final GLAS height at the 1 km 
resolution is shown in Figure S2a. 
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Figure 1. Forested area defined by the MODIS LC (MCD12Q1) and VCF (MOD44B) 
products. Three aggregated forest types (evergreen, deciduous, and mixed forests) with 
percent tree cover (≥50%) were considered in this study. 

 

 (1) 

where, HGLAS refers to the GLAS-derived maximum tree heights, respective WSB and WGP represent the 
signal beginning and the ground peak of GLAS full-waveform, dGLAS is the GLAS footprint size, 
and θ corresponds to the slope. 

2.2.2. Field-Measured Tree Heights 

The State Forestry Administration (SFA) of China has systematically investigated national forest 
resources and updated its database through the repetitive National Forest Inventory (NFI) projects 
since 1973. In this study, we used tree height information from 5,069,905 plots surveyed for the 7th 
NFI period (2004–2008) [33]. Most of the NFI sampling plots are squares (25.8 m × 25.8 m, 
approximately 0.0667 ha), although some plots have rectangular, round or diamond shapes. Density of 
plots has been determined by the expected precision level, and distance between plots varies from  
2 × 2 to 8 × 8 km2 [33]. The NFI reports 23 surveyed attributes for each plot (e.g., geo-location, forest 
type, individual diameter at breast height (DBH), and mean height). To derive maximum tree height 
(HNFI) for each eco-climate zone, we first developed a power function based allometric equation 
(Equation (2)) between mean DBH (i.e., averaged individual DBHs) and height information from 
primary inventory dataset [34–36]. In this process, we extracted and used only 157 effective climate 
zones with ≥20 field surveyed plots (continental scale study). Maximum tree height was then 
calculated from the largest individual DBH within each effective climate zone under the assumption 
that the tallest individual tree has the largest DBH. Distribution of in situ maximum tree heights is 
shown in Figure S2b and their locations are limited over the northeastern regions of CONNA. 
This HNFI will be exploited for model validation only at the continental scale. 
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3. Method 

We examined the performance of the optimized ASRL model over the CONNA. Our analysis 
consisted of two main parts, predicting maximum tree heights at the (a) site and (b) continental scales 
(Figure 2). This section briefly describes the ASRL model and its optimization process. The model 
evaluations at both site and continental scales are presented in the following sub-sections. 

Figure 2. Overall scheme of research. The performances of the optimized ASRL model 
was examined over the CONNA. This study was divided into tests at the site and 
continental scales. 

 

3.1. Overview of the Optimized ASRL Model  

The ASRL model can predict the potential maximum tree heights based on a combination of the 
allometric scaling laws and local resource availability. In this model, hydraulic [13,14] and mechanical [15] 
constraints determine the potential for tree growth. A key premise of the ASRL is that a tree maintains 
its evaporative flow by collecting sufficient resources (water and light) while satisfying its basal metabolic 
needs, in turn, limiting maximum growth. This mechanism can be quantified using a simple inequality 
(Qp ≥ Qe ≥ Q0) where Q0 refers to the required metabolic flow rate, Qe represents the potential 
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evaporative flow rate, and Qp corresponds to the available flow rate. These three flows are associated 
with tree geometry (e.g., canopy radius and leaf area), light (e.g., soil reflectance and leaf absorptivity), 
and water (e.g., root absorption coefficient and depth of a stomata). The Qo increases as a tree grows. 
Simultaneously, the Qe and Qp also change but their alterations may occur in different degrees and 
directions. The ASRL approach, basically, finds a point violating the inequality between given three 
flow rates. Thus, the intersection either between Qp and Qe or between Qe and Q0 represents a 
limitation of tree growth, which is the potential maximum height (see [12,16] for more detailed 
information of the ASRL model). 

Although the unoptimized ASRL model might grant a mechanistic understanding in the prediction 
of potential tree heights [12,16], it still has less predictive power when applied to diverse eco-climatic 
zones and forest types with varying age classes [16,17]. A plausible reason for this drawback is that the 
model implements universal allometric coefficients and scaling exponents (e.g., α = 13 cm2, η = 1.14, 
and γ = 0.33 as in [12]). Obviously, we expect inconsistent allometric relationships across different 
environmental conditions. Shi et al. [16] recommend a parametric optimization of the ASRL model: 
such that (a) iteratively adjusts three ASRL parameters (i.e., α, η, and γ) for each eco-climatic zone; 
and (b) minimizes disparities between the reference and modeled heights, in turn, improving the 
overall prediction accuracy. Amongst a number of ASRL coefficients and exponents, they have tested 
those three parameters governing the canopy geometry, energy absorption and transmission, and water 
absorption capacity of trees [12,16,17]. In this study, we applied the same processes at both site and 
continental scales. Here, the Powell’s optimization approach [37,38] was used for each eco-climatic 
zone (Section 2.1.3) to enable computationally practical model simulations (see Section S1 and [16] 
for detail of parametric optimization process).  

Powell’s optimization algorithm is a straightforward and intuitive optimization process to find the 
minima of a multidimensional function. This algorithm starts with initial parameter values (e.g., area 
of single leaf, α, exponent for canopy radius, η, and root absorption efficiency, γ), and the search 
directions are evaluated sequentially. The best possible improvement in modeled results is explored in 
a search direction through line minimization methods. Here, it iteratively initializes the parameters 
before proceeding to the next search direction. In this study, Powell’s algorithm minimizes the 
difference between the reference and modeled tree heights based on a merit function (Press et al. [38]; 
Equation (3)) feasible to optimize three variables.  

22
3 , ,4 2 0

1 2 3 2 21 1

( )( )( , , ) (( ) )
k

N ASRL i GLAS ik k
k kb kk i

p H

H Hp pF p p p p p w
= =

−−
= − ⋅ + +

∆ ∆∑ ∑  (3) 

 
(3.1) 

 
(3.2) 

where, pk is the ASRL model parameter (k = 1, 2, and 3 represent α, η, and γ, respectively), pk0 refers 
to the initial values of each parameter, pkb is the boundary limit of each parameter defined by  
Equation (3.1), and Δpk is the standard deviation of each parameter value with respect to its initial 
values. In this process, we set variable ranges (lower and upper boundaries as in the TRY database [39]) 
of each parametric tree trait (1 cm2 ≤ α < 100 cm2, 0.8 ≤ η < 1.5, and 0.1 ≤ γ < 0.8) and initial value of 
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each parameter (α = 13 cm2, η =1.14, and γ = 0.33 according to Kempes et al. [12]). wk is a scalar 
weight set by the condition in Equation (3.2), N is the total number of comparison sets (i) for GLAS 
height (HGLAS) and the model prediction (HASRL) with given parameter values for each climatic zone 
and ΔH is the standard deviation associated with HGLAS and HASRL. From this iterative process,  
the minimum of the function F(p1, p2, p3) of each climatic zone was derived to predict maximum  
tree height. 

3.2. Site Scale Model Simulation 

Among 754 available meteorological stations (537 eco-climatic zones), this study selected 14 sites 
(14 eco-climatic zones) for the site-specific model simulations over the CONNA (Table 2; Figure S1). 
The selected study sites accounted for a sufficient number of valid GLAS shots (n ≥ 20) whose  
geo-locations are concurrently registered within 10 km radius circle from each station. These GLAS 
data are necessary for the iterative optimization (training) and validation (test) purposes. The initial 
ASRL predictions were made using the weather station-based input climate and ancillary data for each 
study site. We then used the Powell’s optimization process to calculate the least differences between 
the GLAS-derived and modeled heights, resulting in 14 sets of the three adjusted ASRL parameters. 

In this study, the model evaluations at the site scale maintained independence between the training 
and test sets of the GLAS data using (a) a two-fold cross validation and (b) a bootstrapping technique. 
First, the two-fold cross validation assessed the model performance by randomly partitioning the 
GLAS samples into two equal batches (i.e., training and test sets). Respective training and test GLAS 
tree heights were used for the ASRL model optimizations and evaluations for each study site. Second, 
the bootstrapping approach provided more iterations (n = 250) in the random splitting of the GLAS 
data. Each iteration optimized and evaluated the ASRL model in the same way, as did the two-fold 
cross validation. When interpreting the evaluation results, this study implemented three statistical 
metrics: RMSE, R2, and relative errors (RE = (Hobs − Hpred)/Hobs; where Hobs refers to the observed 
height and Hpred represents the predicted height). RE was an important statistic for determining ASRL 
model performance due to the large variation in tree heights across study sites. 

3.3. Continental Scale Model Simulation 

In addition to the site scale test, we also examined the optimized ASRL model at the continental 
scale (1 km resolution) over the forested lands of the CONNA (Figure 1). Candidate forest pixels for 
this test lie in the effective eco-climatic zones (409 out of 5805 zones over the CONNA; Section 2.1.3) 
where ≥20 valid GLAS shots were geo-registered. The initial ASRL predictions were carried out over 
the individual candidate pixels by implementing the gridded climate and ancillary data. Unlike the  
site-scale test, we formulated the model optimizations at the eco-climatic zone level: assigning 
identical ASRL parameters if the forest pixels were associated with the same eco-climatic zone.  
The optimization for every pixel is not practical since there are over a million forest pixels. For each 
eco-climatic zone, the ASRL parameters were iteratively adjusted to minimize the overall differences 
between tree heights derived from the valid GLAS data and the ASRL model. 
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Table 2. 14 selected study sites where ≥20 valid GLAS shots were geo-registered within a 10 km radius. The site information includes  
geo-location (latitude (Lat.) and longitude (Lon.)), forest types, and climatic variables (temperature (Tmp.), precipitation (Pre.), incoming 
solar radiation (Rad.), wind speed (Wnd.) and relative humidity (Reh.)). The optimized parameter sets (area of single leaf (Opt. α), exponent 
for canopy radius (Opt. η), and root absorption efficiency (Opt. γ)) were also listed. 

Site ID Lat. Lon. Forest Type * Tmp. (°C) Pre. (mm) Reh. (%) Rad. (W/m2) Wnd. (m/s) No. GLAS HGLAS HASRL Opt. α Opt. η Opt. γ 
1 52.35 124.72 M −2.20 474.56 67.14 334.99 2.80 111 13.30 13.00 9.8710 1.1396 0.3460 
2 51.7 124.33 M −2.36 523.59 67.61 316.73 2.11 31 14.25 14.93 12.1840 1.1398 0.3360 
3 48.77 121.92 M −0.15 478.93 63.61 326.31 2.76 34 13.93 14.93 10.0960 1.1391 0.4490 
4 42.35 126.82 D 0.80 774.94 70.29 377.90 1.79 57 14.93 13.00 12.4840 1.1400 0.3330 
5 41.92 124.08 M 6.96 774.71 68.11 325.05 2.28 26 20.63 21.11 7.5630 1.1400 0.4500 
6 41.28 125.35 D 7.13 807.93 67.11 346.31 2.05 21 13.00 16.37 11.2010 1.1399 0.3450 
7 24.02 97.85 E 20.64 1441.78 77.14 307.46 0.93 20 25.40 27.22 9.1110 1.1400 0.4490 
8 22.78 100.97 E 18.83 1487.57 77.54 308.95 0.91 22 37.62 38.50 6.3760 1.1400 0.4490 
9 26.33 114.5 M 18.71 1483.12 78.68 321.19 1.90 20 32.75 29.18 5.3600 1.1399 0.5250 

10 30.62 118.98 M 15.75 1496.55 79.46 355.40 1.68 24 31.27 32.75 6.7490 1.1399 0.4480 
11 27.33 117.47 M 18.13 1845.65 80.86 318.44 0.81 25 30.56 31.27 10.7320 1.1392 0.3440 
12 27.05 118.32 M 18.99 1682.30 80.82 290.53 1.22 21 39.40 39.40 5.1350 1.1398 0.4390 
13 26.9 117.17 M 17.35 1781.74 84.64 283.78 0.81 24 32.00 29.86 10.1920 1.1392 0.3470 
14 25.72 118.1 M 12.42 1712.21 87.86 345.39 7.09 27 32.00 32.75 5.0600 1.1399 0.5610 

Mean 10.79 1197.54 75.06 325.60 2.08 33.07 25.07 25.30 8.7290 1.1397 0.4160 
SD 8.79 524.66 7.59 25.22 1.59 24.37 9.74 9.50 2.6340 0.0003 0.0740 

* E (Evergreen forest), D (Deciduous forest), and M (Mixed forest). 
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The model evaluations at the continental scale were three-fold: (a) a two-fold cross validation using 
the valid GLAS altimetry, (b) a comparison to the in-situ tree height estimates (HNFI; Section 2.2.2), 
and (c) inter-comparison with the existing forest height maps developed by Simard et al. [8] (HSimard) 
and Lefsky [7] (HLefsky). Just as in the site-scale tests, the two-fold cross validation randomly divided 
the valid GLAS shots into two equal sets (training and test) for each eco-climatic zone. Additionally, 
overall means of the modeled tree heights for each eco-climatic zone were assessed by the HNFI. The 
inter-comparison with HSimard and HLefskey required pre-processes of the forest height maps, in terms of 
spatial resolution, projection, and tree height units, to be comparable with our results [16]. 

4. Result and Discussion 

4.1. Predicted Tree Heights at the Site Scale 

Following the initial model predictions of the potential maximum tree heights over the 14 selected 
study sites, three ASRL parameters (α, η, and γ) were iteratively optimized using the independent 
training GLAS estimates. Results from the two model assessments (two-fold cross validation and 
bootstrapping) are shown in Figure 3. The optimized ASRL presented a significant agreement between 
the modeled and test GLAS maximum tree heights (n = 14; RMSE = 1.72 m; R2 = 0.97).  
The performance of the model was satisfactorily stable regardless of the bootstrapping iterations  
(n = 14 × 250 = 3500; RMSE = 4.39 m; R2 = 0.81). The relative error terms (RE; Figure S3) showed a 
fairly tight distribution: standard deviation (SD) of RE = 0.09 for the two-fold validation; and SD of 
RE = 0.17 for the bootstrapping. The optimized ASRL model produced slight overestimations by 2% 
from the reference tree heights (mean of REs (MREs) = −0.02 in both evaluation cases). These site 
scale tests over the CONNA are comparable to those over the CONUS documented in Choi et al. [17] 
(n = 12; RMSE = 1.81 m; R2 = 0.85; MRE = 0.02 for the two-fold validation, and n = 500;  
RMSE = 2.60 m; R2 = 0.66; MRE = −0.04 for the bootstrapping). The performance of the model was 
generally stable across different forest ecosystems at the site scale, as supported by this and previous 
studies resulting in relatively high agreement between the modeled and reference tree heights. 

Figure 3. Comparisons between the predicted and test GLAS tree heights over the 14 selected 
study sites: (a) Two-fold cross validation and (b) bootstrapping approach. 
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The optimized parameter values significantly varied depending on the different eco-climatic 
conditions (Table 2). Looking at the adjusted parameters resulting from the optimization, the single 
leaf area (initial α = 13.0 cm2) showed conspicuous change from the initial value (mean = 8.34 cm2; 
SD = 2.63) while the root absorption efficiency (initial γ = 0.33) narrowly ranged from 0.33 to 0.56 
(mean = 0.42; SD = 0.07). The exponent for canopy radius (initial η = 1.14) was expected to remain 
stable, as it was not likely to depend on the eco-climatic conditions (mean = 1.1397; SD = 0.0003).  
In the sensitivity analysis of single ASRL parameters, Kempes et al. [12] also reported stability in η.  
The morphological characteristics of leaves for each forest type were well represented by α (mean α 
values for deciduous, evergreen, and mixed forests = 11.84, 7.74, and 8.29 cm2, respectively). 
Interestingly, the γ for evergreen forests (mean γ = 0.45) showed relatively higher optimized γ values 
when compared to deciduous forests (mean γ = 0.34). Similar results for γ have been observed in 
previous field (e.g., [40,41]), and modeling studies (e.g., [16]). This parametric optimization allows the 
ASRL model to adjust estimates of canopy geometry, energy absorption/transmission, and 
hydrological absorption capacity for each study site. The optimized ASRL model successfully 
represents the balances in evaporative and available flow rates along with the required metabolic flow. 
This provides a more mechanistic understanding of the relationship between maximum tree heights 
and concurrent local resource limitations. 

4.2. Predicted Tree Heights at the Continental Scale  

A contiguous map of the maximum tree heights over the CONNA (1 km resolution) was generated 
from the optimized ASRL model using the gridded climate and ancillary data (Figure 4a). This map 
closely represents the spatial distribution of tree heights in Chinese forests (mean = 36.44 m; SD = 23.85), 
showing a high correspondence to the spatial pattern of GLAS tree heights (mean = 30.00 m, SD = 6.55; 
Figure S2a). The optimized ASRL model simulated relatively short tree heights over the northeastern 
CONNA (Heilongjiang and Inner Mongolia), whereas relatively tall trees were mostly distributed 
around the central and southern regions (Sichuan, Yunnan, and Chongqing). Such distinct spatial 
patterns of tree heights were strongly governed by local resource limitations based on water 
availability and energy balances. Because of sufficiently warm and humid conditions along with high 
solar energy availability, trees over the southern CONNA likely have higher photosynthetic activity 
than those under resource-limited conditions (northeastern regions) [42,43]. Some regions including 
Jilin and Liaoning provinces close to the border of North Korea were likely to show taller tree heights 
than forests near the border of Russia (Heilongjiang and Inner Mongolia) due to the higher temperature 
and adequate precipitation in Jilin and Liaoning. 

Variations across eco-climatic conditions of optimized ASRL parameters at the continental scale 
were similar to those at the site scale (Figure 4b–d and Table 2). The α values of each eco-climatic 
zone were noticeably adjusted to demonstrate the characteristics of tree growth given local resource 
conditions (Figure 4b). The forest types were satisfactorily reflected in the optimized α (mean α of 
deciduous, evergreen, and mixed forests = 21.31, 13.96 and 17.51 cm2, respectively). Both η (mean = 1.28; 
SD = 0.19; Figure 4c) and γ (mean = 0.37; SD = 0.15; Figure 4d) did not significantly deviate from the 
initial values (initial η and γ = 1.14 and 0.33, respectively), while η and γ still produced distinct spatial 
distributions across different eco-climatic conditions (described in Section 4.1). We believe that this 
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spatial pattern of the modeled tree heights represent a degree of predictive power over the CONNA, 
and the distributions of the optimized parameters support a mechanistic understanding for relationships 
between the predicted maximum tree height and local resource limitations.  

Figure 4. (a) Spatial distribution of tree heights predicted by the optimized ASRL model 
over the CONNA (1 km resolution). Spatial patterns of the optimized (b) single leaf area; 
(c) exponent for canopy radius; and (d) root absorption efficiency. 

 

4.2.1. Evaluations Using GLAS and Field Measured Tree Heights 

The modeled tree heights at the continental scale were evaluated using (a) the two-fold cross 
validation with the GLAS altimetry and (b) the one-to-one comparisons with the field-measured tree 
heights. The two-fold validation showed a moderate agreement between the modeled and independent 
GLAS data (n = 409; RMSE = 6.63 m; R2 = 0.63; Figure 5a). The optimized ASRL model predicted 
8% taller tree heights than GLAS estimates (MRE = −0.08, Figure S4a). This overestimation tended to 
be distributed over the wet environment (southern CONNA; Figure S5a) where there are likely other 
competitive factors limiting tree height [12]. Additionally, the available water flow rate (Qp) may lead 
to an overestimation of tree heights for the wet forests since the ASRL model neglects soil water 
behavior and water holding capacity of given soil type and condition. Large underestimations were 
found in complex terrain regions (high sloped) including Sichuan and Chongqing, and in arid regions 
near the Gobi desert. Two plausible reasons for the discrepancy over the complex terrain are that  
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(a) topographic effects on the GLAS altimetry might not be completely rectified by our correction 
scheme [21,44,45] and (b) input climatic variables are highly sensitive to complex terrain, which might 
produce large uncertainties [46,47]. The discrepancy over arid regions is likely due to trees that have 
specialized traits (e.g., drought tolerance) that deviate from the specific parameters used here [12]. 

Figure 5. Comparisons between the predicted tree height and test GLAS altimetry dataset 
over the CONNA. (a) Two-fold cross validation between the GLAS height and ASRL model 
prediction (409 effective climatic zones); (b) comparison between the field-measured height 
and ASRL model prediction (157 effective climatic zones); (c,d) inter-comparisons 
between the ASRL predictions and Simard’s and Lefsky’s height estimations, respectively. 

 

As shown in Figure 5b, the second evaluation (one-to-one comparison) revealed that the optimized 
ASRL model could explain 52% of the variance of field-measured tree heights (n = 157; RMSE = 6.70 m; 
R2 = 0.52). Here, we noted that the model predicted 6% shorter tree heights when compared to the 
field-measured tree heights (MRE = 0.06, Figure S4b). Most underestimates were situated over the 
densely forested northeastern region of the CONNA (Figure S5b). This was likely caused by errors 
propagated from the training GLAS dataset. The dense forest canopy (e.g., LAI > 4) or the conical 
crown shaped trees might result in relatively shorter GLAS-derived tree heights [48–50]. In addition, 
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the ASRL model neglects the forest age, which may be associated with the underestimates because 
growth rates of the northeastern mature forests (>50 years) might contrast to those of younger forests 
(<40 years) over the central and southern region of the CONNA [51]. 

4.2.2. Inter-Comparisons with Other Existing Forest Height Maps  

We additionally conducted inter-comparisons with two independent forest height maps. A moderate 
degree of agreement (RMSE = 7.69 m; R2 = 0.43) was obtained from the comparison between HASRL 
and HSimard (Figure 5c), but systematic discrepancies existed between the two tree heights.  
Simard et al. [11] used a different definition of forested lands, which included mosaic crops, open 
forest, and saline flooded forests. Also, their regression model of tree heights did not allow the 
prediction of forest heights > 40 m. Thus, the predicted tall trees (>40 m) over the CONNA produced 
larger errors when compared to HSimard. Inter-comparison with HLefsky (Figure 5d) implemented 
Lefsky’s input GLAS-based tree heights, rather than the Lorey’s height as in [7]. As depicted in Figure 5d, 
the optimized ASRL model explained approximately 40% of the variance (R2 = 0.38) of HLefsky. 
However, this comparison showed larger differences between the modeled tree heights and HLefsky 
(RMSE = 8.85 m). These relatively large errors might be caused by the difference in GLAS height 
retrieval processes between this study (standard Gaussian decomposition) and Lefsky’s study 
(statistical approach).  

4.3. Limitations and Further Directions 

The evaluation procedures at both scales showed that the optimized ASRL model has the potential 
to be applied to different forest ecosystems. We successfully demonstrated the spatio-temporal 
variability of tree heights over the CONNA across various eco-climatic zones and forest types. 
Nevertheless, the optimized ASRL model still produced larger uncertainties (Figures 3 and 5). These 
uncertainties might be explained by considering limitations from external (a,b) and internal (c,d) 
factors: (a) quality of input climate and GLAS data; (b) consistency of sampling scheme;  
(c) consideration of forest age and soil condition; and (d) selection of optimized scaling parameters.  

Climate variables (e.g., precipitation and wind speed) are generally highly sensitive to topography 
and land cover conditions due to radiative and hydrological properties [52,53]. Thus, the quality of 
climate variables varies depending on the interpolation methods [54,55]. Since climatic variables 
largely determine resource conditions errors may be induced when resources, quantified by climate 
variables limit height growth rates. In addition, the topographic correction of GLAS data may still 
produce errors due to the simplified footprint size/shape and the simple slope correction scheme [17,44]. 
It is well known that due the radiative characteristics of lidar waveform, the tree height retrievals are 
strongly influenced by the asymmetric shapes and sizes of an individual footprint, off-nadir angles, 
sensor zenith/azimuth angle, and slope orientation conditions [48,56]. The uncertainty induced from the 
GLAS height retrieval might propagate and influence the final ASRL height product. Input data quality 
is an ongoing challenge, and these issues should be resolved through further related studies [48,54–56].  

In the case of the sampling scheme, this study assumed that the number of valid GLAS shots  
(≥20 footprints) and field plots (≥20 plots) were sufficient to reflect the variability of local tree heights 
for each climate zone. In practice, however, our assumption suffered from the sequential discrete GLAS 
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footprints along with ascending or descending orbits and roughly gridded field measurements. In other 
words, sampling scheme limitations and aforementioned uncertainty of GLAS retrieval [21,44,45] 
collectively caused disagreement between tree height distributions derived from GLAS altimetry, field 
observation, and the optimized ASRL model (Figure S5). This problem seems ineludible in this study, 
yet we expect solutions from newly planned field and 3D Earth observing campaigns (e.g., iss-jem 
Lidar for Observation of Vegetation Environment [57]).  

Forest age and soil condition are important drivers in the physical/physiological mechanisms for 
tree growth. Topographic characteristics and soil texture primarily determine the water availability, 
which is associated with tree metabolism [58]. Thus, neglecting soil condition may degrade predictive 
power across diverse eco-climatic regions, because the modeled internal plant flow rate may not fully 
explain the actual water flow rate. We assumed that GLAS heights bring indirect information about 
forest age into the ASRL model, however more explicit forest age-based scaling parameters may be 
needed to improve model performance. To alleviate these influences, subsequent studies will 
incorporate soil water capacity [58] and stand age [59] maps. 

In this study, we optimized three selected ASRL parameters (α, η, and γ) that are strongly 
associated with the canopy radiation energy budget and precipitation uptake rate of trees. Other 
parameters (e.g., stomatal density) were optimized by Kempes et al. [12], which also showed better 
prediction than that of the unoptimized ASRL model. As seen in this and previous studies, parametric 
optimization clearly improves the predictive power of the model. Thus, further study will explore the 
applicability of optimizing additional other ASRL model parameters.  

5. Concluding Remarks 

Our multi-article series ultimately aims to produce spatially continuous maps of forest heights and 
biomass using the Allometric Scaling and Resource Limitation (ASRL) approach. This third study 
tested the feasibility of the optimized ASRL model over the Continental China (CONNA) at both site 
(14 study sites) and continental scales. The Geoscience Laser Altimeter System (GLAS) data were 
used for model optimization. Three selected ASRL parameters (area of single leaf, α; exponent for 
canopy radius, η; and root absorption efficiency, γ) were adjusted to minimize the differences between 
the reference (GLAS and in situ data) and modeled tree heights.  

In the site-scale tests, the optimized ASRL model was assessed using the two-fold cross validation 
and bootstrapping evaluation. Both evaluations maintained the independence between training and test 
GLAS data. Results of the two-fold cross validation at the 14 study sites showed that predicted tree 
heights could explain 97% of the variability in reference tree heights (here, GLAS altimetry). On 
average, estimated height errors were 1.72 m. The model performance was sufficiently stable 
regardless of bootstrapping iterations (n = 250 random splitting of training and test data). This exercise 
also indicated that the optimized ASRL model produced satisfactory predictive power (RMSE = 4.39 m; 
R2 = 0.81) at the site scale. 

With regard to the continental-scale tests, the GLAS and in-situ tree heights were exploited for 
evaluation purposes. The existing forest height maps (HLefsky [7] and HSimard [8]) were also used for 
inter-comparison. The model was capable of showing reasonable correspondence with GLAS and  
in-situ datasets (RMSE = 6.63 m; R2 = 0.63 against the GLAS, RMSE = 6.70 m; R2 = 0.52 against  
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in-situ). The predicted heights tended to be overestimated (8%) and underestimated (6%)  
when comparing to the GLAS and in-situ tree heights, respectively. The inter-comparison indicated 
that the optimized ASRL model generated a moderate degree of agreement to HSimard (RMSE = 7.69 m; 
R2 = 0.43) and to HLefsky (RMSE = 8.85 m; R2 = 0.38). The modeled tree heights were overestimated 
when compared to HSimard while being underestimated when compared to HLefsky—these discrepancies 
might be influenced by the different definitions of the tree height and forested land among these studies.  

We have assessed the feasibility of the model to different forest ecosystems (Chinese forests). The 
optimized ASRL model satisfactorily performed across scales (both site and continental scales), and 
has also provided a mechanistic understanding of relationships between tree heights and local resource 
limitations. Unlike previous works, this study made attempts to evaluate the model using in situ 
maximum tree heights. In this multi-article series, subsequent studies for tree height prediction will 
also test the optimized ASRL model over different study sites (e.g., Amazonian Basin) in addition to 
the CONNA. After addressing the discussed limitations, we are interested in the woody biomass 
prediction using the same methods as in this series. To examine the feasibility of using the model for 
biomass prediction, further study will begin by assessing performance of the model at the site and 
continental scales of the continental US. 
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